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ABSTRACT 

Remote-sensing analysis is conducted for the Naval Postgraduate School campus, 

containing buildings, impervious surfaces (asphalt and concrete), natural ground, and 

vegetation. Data is from the Optech Titan, providing three-wavelength laser data (532, 

1064, and 1550 nm) at 10–15 points/m2. Analysis techniques for laser-scanner (LiDAR) 

data traditionally use only x, y, z coordinate information. The traditional approach is used 

to initialize the classification process into broad-spatial classes (unclassified, ground, 

vegetation, and buildings). 

Spectral analysis contributes a unique approach to the classification process. 

Tools and techniques designed for multispectral imagery are adapted to the LiDAR 

analysis herein. ENVI’s N-Dimensional Visualizer is employed to develop training sets 

for supervised classification techniques, primarily Maximum Likelihood. Unsupervised 

classification for the combined spatial/spectral data is accomplished using a K-means 

classifier for comparison. 

The campus is classified into 10 and 16 classes, compared to the four from 

traditional methods. Addition of the spectral component improves the discrimination 

among impervious surfaces, other ground elements, and building materials. Maximum 

Likelihood demonstrates 75% overall classification accuracy, with grass (99.9%), turf 

(95%), asphalt shingles (94%), light-building concrete (89%), sand (88%), shrubs (85%), 

asphalt (84%), trees (80%), and clay-tile shingles (77%). Post-process filtering by 

“number of returns” increases overall accuracy to 82%. 
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I. INTRODUCTION 

A. PURPOSE OF RESEARCH 

Remote sensing from the air and space contributes invaluable tactical-, 

operational-, and strategic-level intelligence for military commanders and national 

leaders. This is especially true for areas that are becoming increasingly difficult for 

United States’ land- and sea-based platforms to access. Remote-sensing technologies 

must continue to evolve in order to maintain dominance over our adversaries’ expanding 

methods of anti-access area denial (A2AD) and deception tactics. 

This research is devoted to the expanding use of the laser for remote-sensing 

purposes by analyzing a new and different approach for terrain classification using data 

from an aerial laser scanner. Modern-day light detection and ranging (LiDAR) systems 

offer more than traditional laser detection and ranging. Aerial LiDAR platforms are now 

capable of high resolution, three-dimensional (3D), spatial and spectral imaging from 

ever-increasing altitudes. In addition to active nighttime imaging, LiDAR gives us 

exceptional tree canopy and vegetation penetration at substantially better resolutions than 

synthetic aperture radar (SAR). This helps negate adversarial attempts to disguise 

buildings and vehicles under dense foliage, and it provides a means to detect hidden 

roads and trails, even in jungles. LiDAR is the only remote-sensing technology that can 

regularly detect powerlines and cables, a necessity for safe helicopter and unmanned 

aerial vehicle (UAV) operations in hostile and unfamiliar terrains. It may even be able to 

detect the thin trip wires used for some improvised explosive devices (IED). 

Currently, the majority of terrain classification within LiDAR point clouds is 

accomplished using spatial attributes, such as point position (the physical x, y, z 

coordinates), height above the calculated ground level, and the apparent surface 

roughness. Intensity is rarely included, and typically it is only available for a single 

wavelength. This results in a limited number of generalized classification categories, 

approximately two to four. Additional research needs to analyze the conjoined spectral 

intensities of a multi-wavelength LiDAR system to determine if the additional spectral 
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information collected from this sensor lends itself to producing a greater variety of 

classification results over purely spatial and single-intensity methods. 

B. OBJECTIVE 

The primary objective of this thesis is to determine if a multi-wavelength 

(spectral) LiDAR system, such as the Optech Titan, can generate more accurate and 

diverse results in the process of terrain, building, and vegetation classification within the 

LiDAR point cloud. The goal is to expand upon the output of a popular spatial classifier 

(LASclassify) that only considers the geometric attributes of points, resulting in four 

generalized classes: unclassified, ground, buildings, and vegetation. Herein, we will 

analyze three-wavelength intensity values for a 5% random subset of the point cloud to 

distinguish subclasses that correspond to specific manmade materials and terrain types, 

such as asphalt, concrete, clay/brick, turf (fake grass), dirt, sand, and lawn grass. Then, 

we compare the effectiveness of the Maximum Likelihood (ML), Spectral Angle Mapper 

(SAM), and K-means (Bayesian) classifiers in classifying the remaining 95% of the data. 

To meet this objective in a well-understood environment, we select Optech Titan data 

collected in three wavelengths simultaneously over the campus of the Naval Postgraduate 

School in Monterey, California—a semi-urban (urban forest) environment. 

The secondary objective of this thesis is to provide a detailed historical and 

contemporary account of LiDAR systems in space and a thorough review of the 

accompanying scientific literature. One will see that remote-sensing laser systems have 

been an integral part of space operations since the mid-1960s. This secondary objective 

culminates in the Appendix where three NASA-released datasets are adapted to produce 

intriguing LiDAR point clouds of the Moon and Mars. Also, the work detailed in the 

Appendix predates the primary thesis effort and represents important practice with 

LiDAR data in American Standard Code for Information Interchange (ASCII) format 

using two fundamental software programs for point cloud modeling. 
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II. HISTORICAL AND LITERARY REVIEW OF SPACEBORNE 
LiDAR SYSTEMS 

A. BACKGROUND 

The National Aeronautics and Space Administration (NASA) maintains a robust 

resume of space-based LiDAR that spans over five decades. Appropriately, Section B 

reviews the prominent LiDAR-wielding space platforms designed, launched, and 

operated by NASA; Section B also includes systems designed, launched, and operated by 

other agencies that partnered with NASA during their endeavors. Thirteen systems are 

presented in a roughly chronological order from simple satellites bearing only laser 

reflectors to complex explorer probes still operational at the time of writing. 

Section C reviews two space-based LiDAR systems designed, launched, and 

operated by nations other than the United States (U.S.): the Russian Space Program and 

the Japan Aerospace Exploration Agency (JAXA). In Section D, this review concludes 

with a look at four new technologies and their implications on the future of LiDAR in 

space. Overall, the author located 22 LiDAR-satellite platforms, including the 14 U.S., 

one French/Russian, and the one Japanese sensors discussed herein. Although not 

covered further, additional noteworthy space LiDAR systems are listed, with red 

indicating an early mission failure: 

 
U.S. Mars Polar Lander (Atmospheric LiDAR for ice and aerosols) 
 Mars Observer Laser Altimeter (Topographic LiDAR) 
Russia BALKAN-1 (Atmospheric LiDAR on the MIR space station) 
 BALKAN-2 (Atmospheric LiDAR on the ALMAZ-1B satellite)  
China Chang’e Lunar Orbiter (Laser Altimeter) 
Japan Selenological and Engineering Explorer/Lunar Orbiter “SELENE 

aka Kaguya” (Laser Altimeter) 
 

Table 1 offers a comprehensive list of the upcoming laser systems and some 

important facts for a comparison on the evolution of space-based LiDAR. The sources of 

platform and orbital characteristics are cited in the narrative section for each listed 

LiDAR system. The past, present, and future trends are the author’s interpretations based 

on the information in Table 1. 
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Table 1.   Summary of Space-based LiDAR Systems in Chapter II. 

Past (Systems no longer in operation) 
Name Purpose Operating λ Beams Type Orbit 
Beacon 
Explorer- B/C 

Ground laser tracking 
on satellite target 694 nm (red) 1 Ruby Elliptical, low-

Earth, 79.7º 

Apollo 15 - 17 Lunar laser altimeter Unsure - 
maybe 694 nm 1 Q-switch 

Ruby Circular lunar  

ALISSA Cloud-profile LiDAR 
on Mir station 

532 nm 
(green) 

1 (4 
combined) 4 Nd:YAG Circular, low-

Earth, 52º 

Clementine Lunar laser 
mapping—low quality 

532, 1064 nm 
(IR) 

1—Either 
separately Cr:Nd:YAG Circular lunar & 

Earth transfer 

Shuttle LITE Cloud profile, 
atmospheric particles 

355 (UV), 532, 
1064 nm 

1—3 λ’s 
combined 2 Nd:YAG Shuttle STS-64, 

near-Earth 
Shuttle Laser 
Altimetry 

Earth laser 
topography 1064 nm 1 Cr:Nd:YAG Shuttle STS-72, 85 

near-Earth, 57º 
Mars Orbiter 
Laser 
Altimeter 

Mars laser topography 1064 nm 1 Nd:YAG Mars retrograde 
~93º, near-polar 

NEAR Probe Earth–Asteroid 
rendezvous 1064 nm 1 Nd:YAG 433 Eros proximity 

ops 
Phoenix 
Lander 

Mars surface probe & 
atmospheric LiDAR 532, 1064 nm 1—2 λ’s 

combined Nd:YAG N/A 

Shuttle 
TriDAR 

Laser docking & 
proximity ops 

Unsure—
likely 1400 or 
1550 nm 

1 Probably 
Nd:YAG 

Shuttle proximity 
ops with ISS 

ICESat/GLAS 
Clouds/aerosols, 
forest structure, 
biomass, ice sheets 

532, 1064 nm 1—2 λ’s 
Combined 3 Nd:YAG Circular, low- 

Earth, near-polar 

MESSENGER Mercury topography 1064 nm 1 Nd:YAG Highly elliptical, 
sun-shielded 

Hayabusa Asteroid probe 1064 nm 1 Nd:YAG Asteroid rndv 
Past Trend: Diode-pumped, Q-switched, Nd:YAG lasers; 1 - 1064 nm beam; planetary/lunar orbits less than 
1000 km 

Present (Systems in operation at the time of writing) 
CALIPSO Cloud-aerosol, 

polarization  532, 1064 nm 1—2 λ’s 
Combined 2 Nd:YAG Sun-synch 98º, 

low-Earth 
Lunar Orbiter 
Laser 
Altimeter 

High quality lunar 
mapping and 
topography 

1064 nm 5 
1 Nd:YAG 
w/ split 
optics 

Elliptical, near-
lunar 

Future (System concepts in various stages of development and testing) 
Next Gen. 
Integrated 
Landing 
(ALHAT) 

Spacecraft 
autonomous landing 

Laser Altimeter—1570 nm                      Ranges > 2km 
Doppler LiDAR—1550 nm (pre-chirp)   Ranges < 2km 
Flash Imaging LiDAR –1060 nm            Direct hazard avoidance 

ICESat-2/A
TLAS ICESat follow-on 532 nm 

(micro-pulsed) 
6—in 3 
pairs 

Probably 
Nd:YAG 

Circular, low- 
Earth, near-polar 

GEDI Large area forest 
structure/biomass 1064 nm 14 Nd:YAG ISS attachment 

High Altitude 
LiDAR 

Aerial single photon: 
wide swath/high res.  532 nm ~100 

pulselets Nd:YAG 8-10 km altitude - 
not yet space cap. 

Present/Future Trend: Multi-beam (or combination) LiDAR systems, micro-pulsed (high Hz), large area 
coverage, and high point density (spatial resolution) 
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B. U.S./NASA PLATFORMS 

1. Beacon Explorer—B and C and the Goddard Laser 

The history of LiDAR in space began in October 1964 with ground-based lasers 

and satellites carrying cube-corner reflectors (Abshire 2011). Zubritsky explained that, 

almost immediately, satellite laser tracking demonstrated a vast improvement over the 

current method of tracking with microwave radars; radar satellite tracking contributed 

accuracies of approximately 75 meters (m) (Zubritsky 2014). The same document makes 

an important comparison, that the first successful tracking tests with lasers “reported a 

range accuracy up to about three meters—about 25 times better” (Zubritsky 2014, 1). 

Figure 1 shows the Goddard laser (GODLAS) with receiving telescope (left) and 

the Beacon Explorer-B (BE-B) satellite with its array of cube-corner reflectors circled 

(right). The GODLAS was a rotating-mirror, Q-switched, ruby laser mounted on a NIKE-

AJAX radar pedestal; it functioned at a wavelength of 694 nanometers (nm) (red) with 20 

nanosecond (ns) pulses of approximately 0.8 joules (J) and a repetition rate of 1 Hertz 

(Hz) (Degnan 2014). Separate elevation and azimuth joysticks moved the 16-inch 

telescope and the corresponding 9558A photomultiplier detector (Degnan 2014). 

Figure 1.  Goddard Laser and BE-B Satellite. Adapted from Abshire (2011). 
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The BE-B satellite (Explorer 22) was a 52.6 kilogram (kg) ionospheric-research 

satellite tasked with measuring worldwide electron content (NASA Space Science Data 

Coordinated Archive [NSSDCA] 2016b). The NSSDCA page stated that in addition to 

the laser reflectors, BE-B carried an electrostatic probe, radio beacons, and a Doppler-

navigation system (2016b). This source confirmed that with no onboard storage capacity, 

data collection could occur only when the satellite was in view of a ground station 

(2016b). BE-B’s elliptical orbit parameters included an 889 kilometer (km) perigee, 

1,081 km apogee, 79.7° inclination, and 104.8 minute period (NSSDCA 2016b). Its cube-

corner reflectors returned a high percentage of incident light directly back to the source 

(Degnan 2014). BE-B’s specifically designed array of such reflectors ensured adequate 

strength of the returned signal by accounting for beam divergence (Degnan 2014).  

In the first five years, the GODLAS, BE-B/BE-C, other reflector satellites, and 

the deposited lunar retroreflectors of the early Apollo missions proved the ability of the 

laser to operate within the space environment (Abshire 2011). This set the stage for a 

critical transformation: The spacecraft would become the source of the laser pulse instead 

of the target. Over subsequent decades, LiDAR technology would expand from its 

humble beginnings into advanced laser altimeters, precision docking instruments, and 

tools for atmospheric-constituent measurements.  

2. Apollo 15, 16, 17 Laser Altimeters 

The last three Apollo missions carried a flash-lamp pumped, mechanically Q-

switched, ruby laser designed by RCA Aerospace (Abshire 2011). In the same 

presentation, it is mentioned how the Apollo laser altimeter came into existence adapted 

from a tank rangefinder (2011). It weighed 23 kg, dissipated 60 watts of power, had a 

firing rate of 0.05 Hz, and possessed 10 centimeter (cm) transmit and receive apertures 

(Abshire 2011). 

During Apollo 15, 16, and 17, the laser altimeter performed an integral role in the 

service module’s mission “to obtain high-resolution panoramic and high-quality metric 

lunar-surface photographs and altitude data from lunar orbit” (Baldwin 1972, 1–10). 

Baldwin announced that the laser altimeter could work in one of two modes, either in 
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conjunction with or independently of the metric camera system (1972). In the first mode, 

the laser altimeter provided a corresponding altitude measurement for each photographic 

exposure (Baldwin 1972). Later, Roberson and Kaula derived an iterative least-squares 

triangulation process that used exposure times, altitude measurements, and orbital data in 

order to construct properly georeferenced maps from the overlapping lunar photographs 

(Roberson and Kaula 1972). 

Figure 2 demonstrates the laser altimeter’s second mode of operation during 

orbits 15 and 16, independent of the cameras. Roberson and Kaula combined altimetry 

measurements with orbital data to create graphs of the lunar surface height relative to a 

sphere situated at the Moon’s center of mass (1972). The sphere’s radius is 1,738 km, and 

surface elevation is represented on the y-axis in km above spheroid (Roberson and Kaula 

1972). 

Figure 2.  Reduced Laser Altimetry for Orbits 15/16 of Apollo 15. Source: 
Roberson and Kaula (1972, 25–49). 
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On orbit 27, the Apollo 15 laser altimeter began malfunctioning, and its 

performance worsened due to decreased laser output power until orbit 38, when a 

different anomaly permanently ceased laser-altimetry operations (National Aeronautics 

and Space Administration [NASA] 1971). According to the Apollo 15 Mission Report, 

NASA never fully determined the exact cause of the degraded output power anomaly, but 

it attributed the fault to the laser module (1971). Consequently, future flight units 

included an automatic power compensation circuit with a photodiode sensor (1971). 

NASA concluded that the final anomaly likely resulted from electromagnetic interference 

due to a malfunctioning ground-testing safety relay that interrupted the proper operation 

of the laser receiver’s video amplifier (1971). As a result, the power supply to the 

photomultiplier tube held the system at idle voltage for too long (NASA 1971). 

Figure 3 shows the receiver missing the return pulse as a consequence of the 

photomultiplier remaining at idle voltage after laser firing. NASA would remove the 

safety relay from future units, however this marked the end of Apollo 15 laser altimetry 

operations (NASA 1971). 

Figure 3.  The Final Apollo 15 Laser Altimeter Anomaly on Orbit 38. Source: 
National Aeronautics and Space Administration [NASA] (1971, 213). 
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The Apollo 16 laser altimeter fared somewhat better than its predecessor 

(NSSDCA 2016a). Per NSSDCA, the system’s average reliability had decreased by orbit 

60 to approximately 50% (2016a). Unfortunately, the laser altimeter failed three orbits 

later during the final run of photograph collection (NSSDCA 2016a). 

The Apollo 17 laser altimeter operated successfully for the duration of the mission 

(Kaula et al. 1974). Kaula et al. stated that concern about the prior failures caused the 

astronauts of Apollo 17 to avoid excessive use of the laser altimeter early in the mission 

to ensure its later availability to support photographic-mapping operations (1974). Figure 

4 indicates the position of the laser altimeter on the Apollo 17 Scientific Instrument 

Module. The photograph is from the Command Module in lunar orbit. 

Figure 4.  Apollo 17 Scientific Instrument Module and Layout Diagram. 
Adapted from Lunar and Planetary Institute and Universities Space 

Research Association (2016). 

 

Kaula et al. combined laser altimetry data from the Apollo 15, 16, and 17 

missions to derive average elevations for important lunar terrains in relation to the 1,738 

km (mean radius) spheroid: “farside terrae +1.8 km, nearside terrae -1.4 km, ringed maria 

-4.0 km, and other maria -2.3 km” (Kaula et al. 1974, 3049). Their analyses of these 

laser-derived elevation differences, along with gravitational and surface density 
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measurements, led them to conclusions about the composition and density of the lunar 

core: “It is unlikely that any iron core is greater than 400 km in radius. A more likely 

model is a gradual increase in density from 3.33 g/cm-3 to 3.46 g/cm-3 at 1,000 km 

depth, compatible with Mg/Fe ratios plausible for mare basalt parent material” (Kaula et 

al. 1974, 3049). 

3. Clementine 

Launched 25 January 1994, the Clementine lunar probe originated from a NASA/

Ballistic Missile Defense Organization partnership. According to the National Space 

Science Data Center (NSSDC), Clementine’s mission was “to test sensors and spacecraft 

components under extended exposure…and to observe the Moon and near-Earth asteroid 

1620 Geographos” (National Space Science Data Center [NSSDC] 1994, 1). NSSDC 

claimed that after completing two months of lunar mapping operations and an Earth 

transfer orbit, Clementine suffered from an attitude control thruster malfunction that 

exhausted the thruster’s remaining hydrazine fuel supply and spun the spacecraft at 80 

revolutions per minute (1994). Therefore, NASA scrapped the asteroid rendezvous 

portion of the mission, and Clementine headed into the Van Allen radiation belts to test 

its remaining functional components (1994). The mission ended in June 1994 when 

intelligible transmissions from Clementine to Earth ceased (NSSDC 1994). 

Figure 5 provides a drawing of the 1.88 m by 1.14 m (main-body dimensions), 

227 kg Clementine spacecraft and its diode-pumped chromium neodymium-doped 

yttrium aluminum garnet (Cr:Nd:YAG) solid-state compact LiDAR (NSSDC 1994). The 

NSSDC details page informed us that the Clementine LiDAR functioned at 532 nm and 

1064 nm wavelengths (green and infrared) with pulse energies of nine and 180 milli-

joules (mJ), respectively (1994). Both the infrared ranging and green active-imaging 

wavelengths had a pulse-width of less than 10 ns (NSSDC 1994). During lunar-mapping, 

Clementine’s LiDAR frequently outperformed its maximum effective range of 500 km 

(NSSDC 1994). The Clementine project represented a vast improvement over the Apollo 

laser altimeters. Researchers geolocated 72,300 of Clementine’s 600,000 total laser shots, 

and accuracy averaged 90 m vertically and 3 km horizontally (Neumann 2001). 
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Figure 5.  Drawing of the Clementine Spacecraft and its LiDAR System. 
Source: Williams (2011). 

 

Figure 6 is an equal-area projection topographic map of the Moon derived from 

Clementine LiDAR data. Elevations range from about -8 km (purple) to +4 km (pink/

white). Also, the Lunar and Planetary Institute informs us that the farside image is tilted 

in order to show the low-lying, 2,500 km wide, Aitken Basin near the lunar south pole 

(Lunar and Planetary Institute 2016). 

Figure 6.  Clementine Topographic Map of the Moon. Source: Lunar and 
Planetary Institute (2016). 
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4. Space Shuttle LiDAR In-space Technology Experiment and Laser 
Altimeter Experiments 

In 1994, NASA released a factsheet that contained an interesting eye-safety laser 

disclaimer and a warning to the international science community to avoid using a 

medium-plus sized telescope to view the Space Shuttle Discovery during STS-64 

(McCormick et al. 1994). The Space Shuttle LiDAR In-space Technology Experiment 

(LITE) was a first: an atmospheric LiDAR survey conducted by an Earth-orbiting 

spacecraft (Abshire 2011). Figure 7 provides an illustrated diagram of the payload bay 

apparatus and the LITE mission concept.  

According to Abshire, Discovery maintained a circular low-Earth orbit at 206 km 

for nine days of data collection (2011). He explained how the thin laser pulses traveled 

downward through the mid-stratosphere and the troposphere, diverging into 300 m 

ground spots spaced 740 m along-track (2011). Overall, LITE collected 53 hours of near-

nadir atmospheric backscatter profiles on the order of 10 seconds each (Abshire 2011).  

Figure 7.  LITE Sample Mission and Laser Apparatus Cartoons. Adapted from 
McCormick et al. (1994). 

 



 13 

Altogether, the LITE transmitter apparatus, boresight assembly, telescope 

receiver, camera, and system electronics weighted 1,304 kg and consumed 3,030 watts 

(McCormick et al. 1994). McCormick commented that the pressurized and thermal-

controlled laser transmitter module encased two identical, flash-lamp pumped, Q-

switched Nd:YAG lasers (1994). He added that the two lasers never fired simultaneously 

to ensure redundancy, and the initial laser pulse created was a 1064 nm (infrared) beam 

(1994). McCormick went on to say that this pulse was temporarily split and then 

recombined into one beam containing three wavelengths—harmonic generators converted 

two of the three split-beams into the additional 532 nm (green) and 355 nm (ultraviolet) 

wavelengths (1994). Additionally, LITE used gimballed turning prisms to point the laser 

boresight at the Earth, and the receiver encased a Ritchey-Chretien Cassegrain telescope 

with beryllium as the primary mirror and quartz as the secondary mirror (McCormick et 

al. 1994). The aft optics assembly contained photomultiplier tubes for detecting the 

ultraviolet and green ground/atmospheric returns and a silicon avalanche photodiode for 

the infrared signal (McCormick et al. 1994). 

Almost 10 years after program commencement, LITE accomplished the goals of 

its creators and the LITE Science Steering Group “to demonstrate operation of a LiDAR 

in space and the maturation of LiDAR technology toward the development of future 

systems on free-flying satellite platforms” (Winker, Couch, and McCormick 1996, 1). 

Winker, Couch, and McCormick claimed that LITE would pave the way for future 

longer-term atmospheric and climate-monitoring satellites, and they were right: ICESat, 

CALIPSO, and the upcoming ICESat-2 (Winker, Couch, and McCormick 1996).  

Within three years of LITE, shuttle-based LiDAR would conduct two additional 

missions, albeit for a traditional topographic purpose. Shuttle Laser Altimetry (SLA) 

Missions 1 and 2 “demonstrated the effectiveness of orbital laser altimeters for terrestrial 

geodesy despite the inconvenience of using the shuttles as an orbital platform” (Neumann 

2001, 73). Furthermore, in the publication “Some Aspects of Processing Extraterrestrial 

LiDAR Data—Clementine, NEAR, MOLA,” Neumann mentioned that left-over spares 

from the Mars Orbiter Laser Altimeter (MOLA) project plus additional components gave 

rise to the SLA (2001). Although, Neumann did not disclose much further, he did provide 
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some statistics (listed in Table 2) on the MOLA-offshoot that became the LiDAR system 

for the SLA-01 and SLA-02 missions. 

Table 2.   SLA Mission Quick Stats. Adapted from Neumann (2001). 
Mission STS Date Laser Shots 

Fired 
Shots 
Geolocated 

Horizontal 
Accuracy 

Vertical 
Accuracy 

SLA-01 STS-72 Jan 1996 Cr:Nd:YAG 
at 10 Hz 

3 Million 1,203,000 40 m 2.78 m 

SLA-02 STS-85 Aug 1997 Cr:Nd:YAG 
at 10 Hz 

3 Million 2,090,000 40 m 6.74 m 

 

Unlike the atmospheric-sensing LITE, SLA only needed one 40 mJ, 1064 nm 

(infrared) laser beam (Bufton et al. 1995). Bufton et al. described that the SLA pulse-

width was 10 ns, and the resulting terrestrial footprint was 100 m in diameter (1995). A 

silicon avalanche diode detected the echoed waveforms (1995). Next, they stated that a 

pulse waveform digitalizer interpreted the return signal in order to resolve the terrain 

topography and vegetation height-above-ground profiles within each laser footprint 

(1995). Furthermore, reducing the waveform resolution and sampling for a longer 

duration enabled the SLA to function as an atmospheric and cloud-aerosol LiDAR 

(Bufton et al. 1995). Attached as a Hitchhiker payload, the SLA transmitted its pulses 

directly along nadir while the Shuttle orbited at around 300 km; along-track sampling 

was similar to LITE, approximately 740–750 m (Sun et al. 2003). 

Figure 8 shows a composite map of the mostly tropical (28.45° N and S) SLA-01 

ground tracks and the 57° inclination SLA-02 tracks. Harding et al. used data collected 

from the SLA-01 mission over “Africa, southern Asia, central South America, and 

Australia” to test the vertical accuracy of the U.S. Geological Survey’s Global 30 Arc-

second Digital Elevation Model (DEM) Dataset (GTOPO30), a DEM with 30 arc-second 

(~1 km) grid spacing (Harding et al. 1998, 1). For example, Australia had 29,139 

discrepancies between SLA-01 measurements and the GTOPO30, with an average error 

of -21.72 m and a standard deviation of 48.92 m; Africa’s discrepancies totaled 244,640, 

with a mean error of -1.40 m and a standard deviation of 44.75 m (1998). Additionally, 

Harding et al. realized that the SLA’s ability to achieve an accurate ground return in a 

forested area depended significantly on the density of the vegetation (1998). Also, they 
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noted that the SLA mapped only the cloud-top layer when it operated above opaque 

clouds (Harding et al. 1998). 

Figure 8.  Earth Surface Coverage for Both Shuttle Laser Altimetry Missions. 
Source: Carabajal et al. (2000, 2). 

 

Behn and Zuber combined SLA-01 LiDAR data and TOPEX/POSEIDON radar 

altimetry to study ocean topography (Behn and Zuber 2000). They discovered a 2.33 m 

difference (root mean square) between the University of Texas Mean Sea Surface Model 

(CSRMSS95) and the more than one million SLA-01 sea surface measurements (2000). 

Moreover, Figure 9 illustrates that the SLA LiDAR could successfully maintain track 

even when crossing the land-sea threshold in coastal areas with drastically varying 

elevations (Behn and Zuber 2000). The top region presented in Figure 9 is a selection of 

the South American coast and the bottom region is a segment of the Red Sea. Also, the 

laser points are represented by red dots, and the land outline is a conjunction of National 

Geophysical Data Center Terrain Base elevations and over-ocean segments of the Earth 

Gravitational Model 1996 (EGM96) geoid (Behn and Zuber 2000).  

Sun et al. compared SLA-02 altimetry data to the corresponding surface heights 

from the year 2000 Shuttle Radar Topography Mission (SRTM) to create a highly 

accurate and digital global-topographic database (Sun et al. 2003). Their first step was 
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filtering out cloud returns by eliminating any point with an elevation above 3 km (2003). 

Their follow-on tasks involved analyzing all waveforms and terrain returns, then 

associating them to Landsat imagery (2003). The LiDAR data was instrumental in 

validating the radar data and led to their strong conclusion: “The SRTM DEM proves to 

be the best-known DEM ever generated at the global scale with its consistency and 

overall accuracy” (Sun et al. 2003, 410). 

Figure 9.  Two SLA-01 Profiles Illustrating the Ability to Track Across the 
Land-Sea Interface. Source: Behn and Zuber (2000, 1436). 

 

Only two of the four originally planned SLA missions occurred, nevertheless 

Bufton et al. correctly predicted that the SLA would serve as an important precursor for 

future space-based LiDAR systems, including the Geoscience Laser Altimeter System 

(GLAS)—eventually to fly onboard ICESat (Bufton et al. 1995). Indeed, LITE and SLA 
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marked the beginning of an ongoing NASA Goddard endeavor to transcend aircraft 

LiDAR systems into “space-based laser remote sensing devices” (Bufton et al. 1995, 1). 

5. Mars Global Surveyor/Mars Orbiter Laser Altimeter 

Over the course of its decade-long mission from November 1996–2006, the Mars 

Global Surveyor (MGS) spacecraft and its LiDAR, the Mars Orbiter Laser Altimeter 

(MOLA), provided laser topographic mapping across the entire surface of the red planet 

(NASA 2007b). Figure 10 offers a rendition of the MGS and a photograph of MOLA. 

Figure 10.  Mars Global Surveyor and MOLA. Left Source: NASA Jet Propulsion 
Laboratory [JPL]/California Institute of Technology [Caltech] (2012). 

Right Source: Smith, David, and Zuber (2007). 

 

According to Smith, the 25.9 kg and 30.9 watt MOLA was nearly identical to the 

Mars Observer Laser Altimeter (same acronym) that had flown onboard the ill-fated Mars 

Observer Probe three years prior (Smith 1996). He mentioned that MOLA’s non-

topographic objectives included measuring the vertical profiles of carbon dioxide and 

water clouds in the Martian atmosphere (1996). Furthermore, Smith and other scientists 

combined MOLA LiDAR data with measurements from the spacecraft’s other 

instruments, such as the thermal emission spectrometer and the magnetometer, to study 
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the internal compositions of the two polar caps and the other planetary structures on Mars 

(Smith 1996). 

Figure 11 shows a diagram of the laser waveform produced by MOLA’s Q-

switched, diode-pumped, Nd:YAG laser that operated at 10 Hz, 40 to 45 mJ, 8 ns pulse-

widths, and a 1064 nm (infrared) wavelength (Abshire 2011). Abshire stated that the 

silicon avalanche photodiode analog detector was effective at catching a minimum return 

signal of 230 photons (represented by the line labelled detection threshold); pulse round-

trip travel time and the corresponding laser-derived ranges enabled the calculation of 

surface elevation (2011). The shape of the returned laser waveform described terrain 

roughness, and a comparison of the transmitted versus received pulse energies yielded a 

means to predict surface reflectance (Abshire 2011). MOLA’s horizontal and absolute 

vertical resolutions were 160 m and 30 m, respectively (Smith 1996). 

Figure 11.  Sample MOLA Measurement. Source: Abshire (2011, 11). 

 
An example of one of about 671 million MOLA laser shots. 

The MGS mission represents a historic success. MOLA data vastly improved the 

scientific community’s overall understanding of Mars (NASA JPL/Caltech 2016). Prior 

knowledge about the red planet came almost exclusively from less accurate and outdated 
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Mariner, Viking, and Earth-based radar measurements (Smith et al. 2001). Per Smith et 

al., after spending the first two years on station in capture and aerobrake testing orbits, 

the MGS spacecraft commenced its LiDAR-mapping mission in February of 1999 from a 

400 km circular, near-polar, orbit at 92.8° inclination (2001). Figure 12 provides 

topographic maps of the Martian north and south poles (elevations in m). Figure 13 is a 

side-by-side topographic map of the eastern and western hemispheres (elevations in km). 

Figure 12.  MOLA LiDAR Elevation Maps of Mars’ North and South Poles. 
Source: NASA JPL/Caltech (2016). 

 
North pole (Left) labels: Olympia Planum—Icecap plateau at (180º E, 80º N). Boreale, 
Chasma—The deep trench in the ice cap at (330º E, 85º N). 

South pole (Right) labels: Australe, Planum—Southern plain that coincides with part of the 
southern icecap. Australe, Chasma—A canyon near (90º E, 85º S). 
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Figure 13.  MOLA LiDAR Elevation Map of Mars’ Eastern and Western 
Hemispheres. Source: NASA JPL/Caltech (2016). 

 

6. Near Earth Asteroid Rendezvous Spacecraft—Asteroid 433 Eros 

From 2000 to 2001, NASA’s Near Earth Asteroid Rendezvous (NEAR) 

spacecraft, nicknamed Shoemaker, performed a scientific study of the asteroid 433 Eros 

from a predominantly 35 km orbit (Cole 1998). Cole explained that the NEAR Laser 

Rangefinder’s (NLR) mission was to collect precise laser altimetry measurements that 

would supply scientists with high quality data products unobtainable from Earth-based 

asteroid research (1998). Also, he revealed that in order to carry out its extended deep-

space tasking, NEAR maintained orbital trajectories which kept its LiDAR and other 

instruments directed at 433 Eros while simultaneously pointing the topside 

communications antenna and solar arrays at the Earth and Sun, respectively (1998). 

Figure 14 demonstrates this feat of spacecraft attitude control, and it also shows a single 

NLR footprint of 12 m—not to scale on the estimated 36 km x 15 km x 13 km (length, 

width, height) asteroid. 
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Figure 14.  Drawing of Orbital Requirements for NEAR and Photograph of Its 
Laser Rangefinder. Source: Cole (1998, 143, 145). 

 

Figure 14 also provides a picture of the LiDAR device that successfully mapped 

433 Eros from ranges up to 100 km (Cole 1998). Cole commented that pre-launch testing 

of the NLR yielded an average range accuracy of 32 cm and a beam divergence of 235 

micro-radians (Cole 1998). Per Abshire, the 4.9 kg NLR operated at 1 Hz, 16.5 watts of 

power (average), 15 mJ pulse energies, 12 to 15 ns pulse-widths, and a wavelength of 

1064 nm (infrared) (Abshire 2011). Also, the laser transmitter was a Q-switched, diode-

pumped, Nd:YAG system (Abshire 2011). Cole mentioned that the NLR’s avalanche 

photodiode detector employed advanced timing electronics for time-of-flight (TOF) 

calibrations and for accurate detection of the laser backscatter from the asteroid’s surface 

(Cole 1998). 

In their report titled “The Shape of 433 Eros from the NEAR-Shoemaker Laser 

Rangefinder,” Zuber et al. presented topographic findings and diagrams based on the 

NLR-collected data (Zuber et al. 2000). Figure 15 is a radius map of the asteroid using a 

cylindrical projection; longitude is positive in the easterly direction from 0° to 360°, and 

latitude ranges from -90° to 90°. Zuber et al. indicated that latitude separation is 

approximately 54 m at the asteroid’s poles, expanding to 307 m at the equator (2000). Of 

note, the low regions named Himeros and Psyche center themselves at 75° East and 270° 

East, respectively. 
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Figure 15.  Radius Map of 433 Eros in Cylindrical Projection. 
Source: Zuber et al. (2000, 2098). 

 

Furthermore, the NLR enabled Zuber et al. to determine the overall shape and 

slopes of 433 Eros (2000). They concluded that the asteroid generally slopes between five 

and 15 degrees with exception of the two sharply concave regions Himeros and Psyche 

that together form a wide depression running north to south, slightly offset toward the 

positive x-direction (Zuber et al. 2000). Figure 16 provides two 3D views of 433 Eros 

with slopes color-scaled from a 0° low (purple) to a 40° high (white). The left view is 

from (300°E, 30°S), and the right view is from (0°E, 30°S). 
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Figure 16.  Two Views of a 3D Shape Model of 433 Eros from the NLR. 
Source: Zuber et al. (2000, 2099). 

 

7. Phoenix Mars Lander 

Landing on the red planet in May 2008, the mission of Phoenix Mars Lander was 

to investigate a region on Mars where scientists expected the topsoil to contain a 

significant amount of frozen water (NASA 2008).1 NASA explained that Phoenix would 

conduct ground-based weather research near the Martian north pole, specifically focusing 

on the seasonal water cycle where ground-ice sublimes into atmospheric water vapor and 

later depositions back into solid form (2008). Phoenix’s meteorological LiDAR measured 

the downward-reflected laser backscatter in order to collect altitude, abundancy, and 

sizing data for particles of dust and ice in the atmosphere (NASA 2008).  

Figure 17 presents an artistic rendition of the probe’s robotic arm hard at work 

collecting soil samples for onboard testing. Meanwhile, its top-mounted LiDAR conducts 

laser measurements of the Martian atmosphere. Figure 17 also displays a true-color 

surface stereo photograph taken by Phoenix on 25 June 2008. 

                                                 
1 Earlier gamma-ray spectrometer observations by the Mars Odyssey Orbiter aided in selection of the 

Phoenix landing site; Odyssey measurements suggested that permafrost soil existed near the planet’s poles 
(NASA, 2008). 
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Figure 17.  The Phoenix Mars Lander. Source: NASA (2015). 

 

The Canadian Space Agency contributed the Phoenix weather instrument suite, 

and the LiDAR came courtesy of MDA Space Systems, Ontario and Optech Inc., 

Toronto. Whiteway et al. remarked that the laser transmitted at 100 Hz via a passively Q-

switched, diode-pumped, Nd:YAG assembly that produced a pulse-width of 10 ns and a 

total pulse energy of 0.7 mJ: 0.3 mJ at 1064 nm (infrared) and 0.4 mJ at 532 nm (green) 

(Whiteway et al. 2008). They stated that a potassium-titanyl phosphate crystal created the 

visible green wavelength from part of the original infrared beam through frequency 

doubling (2008). Additionally, the 10 cm diameter receiver employed a silicon avalanche 

photodiode detector that recorded the return signals via 14-bit analog and photon-

counting methods (Whiteway et al. 2008). 

Overall, Phoenix exceeded expectations by significantly outlasting its intended 

mission duration of 90 Martian solar days (sols) (Whiteway et al. 2008). A sol is 

approximately 24 hr 39 min 35 sec. Figure 18 provides a LiDAR-derived vertical profile, 

local time versus altitude, of the Martian clouds directly above the probe on sol 99 (3 

September 2008); starting at 0500 local, ice crystals are detected falling from the clouds 

at an altitude of about 3.25 km (NASA/JPL-Caltech 2016). 
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Figure 18.  Phoenix LiDAR Profile of Martian Clouds with Falling Ice Crystals. 
Source: NASA/JPL-Caltech (2016). 

 
Collected on 3 September 2008. 

8. Space Shuttle Triangulation + LiDAR Automated Rendezvous and 
Docking 

Although the purpose of the LiDAR system discussed here differs substantially 

from nearly all of the others, it is nonetheless worthy of inclusion as a two-fold testament 

to the future of precision spacecraft rendezvous and to the honored memory of the Space 

Shuttle. Figure 19 is a photograph taken from the International Space Station (ISS) of the 

Space Shuttle Discovery testing the Triangulation + LiDAR (TriDAR) spacecraft 

precision docking system during STS-131 in April 2010 (NASA Human Space Flight 

2014). Neptec Design Groups’ TriDAR is a self-sufficient “vision” laser system that 

applies its own models and protocols during proximity operations without the assistance 

of retroreflectors or other inputs from the rendezvous target (Ruel, Luu, and Berube 2010, 

15). Representing another international endeavor between NASA and the Canadian Space 

Agency, the TriDAR completed three space-testing flights on STS-128, STS-131, and 

STS-135 (Christian and Cryan 2013). 
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Figure 19.  Discovery Docking with the ISS Using TriDAR. Adapted from NASA 
Human Space Flight (2014). 

  
STS-131, April 2010. TriDAR is circled. 

On these STS missions, TriDAR demonstrated the ability to derive the target 

spacecraft’s shape, proximity, and relative velocity from its analyses of successive 3D 

point clouds (Christian and Cryan 2013). Furthermore, starting with STS-131, TriDAR 

successfully maintained a real-time track on the ISS during a 360-degree 

circumnavigation without any external automation or human-controlled inputs (Ruel, 

Luu, and Berube 2010). 

Figure 20 graphs the three-axis docking approach of Discovery with the ISS 

during the first TriDAR space-test in August 2009. Relative distances on all y-axes are in 

feet, and each graph includes three vertical lines to distinguish among the final approach, 

triangulation transition, and capture phases. Ruel, Luu, and Berube noted that the total 

process took approximately 30 minutes from the go-for-dock command (2010). 

Moreover, the TriDAR system continuously fed the Space Shuttle’s pilots highly accurate 

closing data, including automatically updated state vectors giving the relative position of 

the ISS throughout docking and undocking operations (Ruel, Luu, and Berube 2010). 
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Figure 20.  Three-Axis Docking Distances from Discovery (STS-128) to ISS. 
Source: Ruel, Luu, and Berube (2010, 18). 

 

According to Neptec, the TriDAR system uses laser-triangulation methods similar 

to those applied by the Space Shuttle’s Laser Camera System (Ruel, Luu, and Berube 

2010). Ruel, Luu, and Berube mentioned that a single laser optic conducted both 

triangulation and LiDAR functions to collectively improve the system’s capability to 

accurately detect objects in space (2010). Additionally, the system employs a thermal 

detector to extend initial target detection and subsequent rendezvous guidance beyond the 

maximum range of the laser component alone (a few km) (2010). With the thermal 



 28 

imager operational, the TriDAR system successfully detected the ISS at a range of just 

over 43 km (Ruel, Luu, and Berube 2010). 

Lastly, Figure 21 is a 3D TriDAR-generated laser image of the ISS. Space Shuttle 

Discovery compiled the image during undocking operations and throughout the shuttle’s 

subsequent circumnavigation of the station (Ruel, Luu, and Berube 2010). The image is 

colored by relative ranges from near to far: red, yellow, green, and blue. Despite 

Discovery passing behind the ISS while mapping, the opposite side is still represented in 

the TriDAR point cloud as farther-away (blue) due to the outward spiral-type maneuver 

taken by the Shuttle around the station (Ruel, Luu, and Berube 2010).  

Figure 21.  TriDAR 3D Mapping of ISS During STS-128 Undocking Operations. 
Source: Ruel, Luu, and Berube (2010, 19). 

 

9. Ice, Cloud, and Land Elevation Satellite/Geoscience Laser Altimeter 
System 

In the early 2000s, the Shuttle’s LITE and Laser Altimetry missions of the 1990s 

became surpassed in duration, scope, and magnitude. NASA’s Ice, Cloud, and Land 

Elevation Satellite (ICESat) carried one scientific instrument, the Geoscience Laser 

Altimeter System (GLAS); the final stats are seven years in operation (2003–2010) and 

1.98 billion laser shots (Abshire 2011). ICESat had numerous objectives, but the 

principle ones involved measuring the changing elevations and mass balances of the ice 

sheets and landmasses located at the Earth’s Arctic and Antarctic regions (NSSDC 2003). 

NASA scientists would use this data to calculate the current and estimated-future effects 
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of climate change on global sea levels and polar sea-ice volumes (2003). ICESat’s 

secondary missions included additional LiDAR-specialized tasks, such as measuring the 

vertical structures and heights of clouds and aerosols; mapping terrain topography, 

reflectivity, and roughness (outside of the polar regions); and analyzing forest structures 

and biomass, vegetation heights, and snow patterns (NSSDC 2003). Figure 22 provides a 

rendition of ICESat and a photograph of GLAS under construction.  

Figure 22.  Artist Rendition of ICESat on Orbit and Boresight View of GLAS. 
Adapted from NASA Goddard (2015). 

 

After initial on-orbit testing, ICESat repositioned into its 94° low-earth, nearly 

circular, orbit with an apogee of 594 km and a perigee of 586 km (NSSDC 2003). Figure 

23 demonstrates ICESat using Global Positioning System (GPS) receivers to maintain 

accurate orbital timing and positioning. Additionally, it shows ICESat employing star 

trackers for precision spacecraft attitude control and laser boresight pointing. The ground 

tracks, transmitted along nadir, are spaced 170 m apart with each laser footprint 

measuring 70 m in diameter (Abshire 2011). 
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Figure 23.  GLAS Measurement Approach. Source: Abshire (2011, 24). 

 

To achieve the intended three- to five- year data collection period, GLAS carried 

three transmitter modules, and each one had a 40 Hz Nd:YAG laser that produced a 

combined 1064 nm (infrared) and 532 nm (green) pulse (Abshire 2011). Abshire stated 

that pulse-widths were 4 ns in duration (2011). Additionally, he specified that a silicon 

avalanche photodiode served as the infrared detector capable of recording the return 

signal at 1 Gigahertz (GHz) (2011). Photon-counting detectors captured the green 

ground-return pulses and atmospheric backscatter (Abshire 2011). The infrared 

component measured surface altimetry and thick-cloud elevation data at accuracies of 15 

cm, and the green component measured thin-cloud and atmospheric-aerosol distributions 

(Zwally et al. 2002).  

The literature-base of research conducted from ICESat/GLAS measurements is as 

extensive as the numerous raw and processed data products themselves. The author 

discovered more scientific publications hereunto pertaining than for any of the other 

systems discussed in this review. Hieu van Duong analyzed the quality of large-footprint 

full waveforms and elevation data for selected areas in Europe, discovering that the 

available ICESat data conformed reasonably well to a Gaussian decomposition approach 

for waveform analysis despite the low number of identical-repeat footprints across the 
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European continent (Duong 2010). Likewise, Yadav’s study of the complex, multi-

peaked, ICESat waveforms from ravines and other areas of rough terrain created 

improved DEMs for those areas as compared to DEMs generated exclusively from the 

Earth Observing Cartosat satellites (Yadav 2010). 

Figure 24 provides examples of Duong’s Gaussian decomposition approach for 

land-cover classification. Two ICESat tracks are aligned to the right of their respective 

CORINE Land Cover (CLC) 2000 database tracks. All tracks are colored by coverage 

classification: high vegetation (green), urban (red), bare/low vegetation (white), or water 

(blue). Overall, Duong’s classification results matched well with the CLC2000 data, with 

general exceptions in three small areas (labelled one through three with zoomed in views 

to the left). Area one represents bare ground misclassified as urban; Area two is water 

misclassified as bare ground; Area three is urban misclassified as forest. In each area of 

misclassification, the waveform for one return is illustrated, it corresponds to the location 

marked by the white arrows. The black waveform is the ICESat data, and the yellow its 

Gaussian decomposition. 
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Figure 24.  Classification Based on Waveform Gaussian Decomposition for Two 
ICESat Tracks Superimposed on Landsat-7 Imagery. 

Source: Duong (2010, 140). 

 

Research studies which derive an understanding of Arctic and Antarctic landmass 

elevations, sea-ice thickness, subglacial features, and climate changes are even more 

impressive. Kurtz et al. merged snow depth models with ICESat data for the winter and 

fall seasons from 2003 to 2008 (Kurtz et al. 2011). Their results indicated that the warmer 

ocean is contributing an ever-increasing effect on Artic land temperatures due to the 
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shrinking volume of sea-ice, which acts as an insulator between land and sea (Kurtz et al. 

2011). Sorensen et al. used an ICESat measurement-based procedure to predict the 

changing mass distribution of the Greenland ice sheet, concluding that annual losses 

ranged from between 191 ± 23 to 240 ± 28 billion tons of ice (Sorensen et al. 2011). 

More recently, Howat et al. combined ICESat elevation data, Worldview stereopair 

imagery, Landsat imagery, and ice-penetrating radar measurements to expose the sudden 

and unexpected drainage of a subglacial lake in Greenland (Howat et al. 2015). 

Figure 25 provides an elevation map of Antarctica derived by Shuman from 

ICESat/GLAS collections over approximately one month: 3 October to 8 November 2004 

(Shuman 2016). The dark blue areas at 0 m above sea level are the ice sheets. The 

maximum elevation, about 4 km, defines the majority of Antarctica’s eastern region. The 

crisscrossing lines show the satellite’s ground tracks over time. 

Figure 25.  Antarctica Elevation Model from GLAS Collections. Source: Shuman 
(2016). 

 

Lastly, scientific papers pertaining to vegetation structures, biomass, and cloud/

aerosol distributions (ICESat’s secondary missions) are also detailed and extensive. For 

example, Pang et al. discovered that GLAS waveform data captured during the summer 
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and early fall seasons contributed better intensities for estimating temperate forest heights 

in northeastern China (Pang et al. 2008). Goetz et al. analyzed ICESat global-altimetry 

and land-altimetry datasets, in conjunction with Moderate Resolution Imaging 

Spectroradiometer (MODIS) data and information extracted from the Alaska Burned 

Area Database, to study disturbed forests in Alaska (Goetz et al. 2010). 

Figure 26 is a vertical profile of wildfire smoke clouds in central California. The 

top left window box exhibits the corresponding ICESat track (green line), locations of 

fires (red dots), and smoke direction. In the main image, the x-axis indicates latitude and 

longitude, and the y-axis is cloud height in km. Density is color-coded from dark blue 

(ambient atmosphere) to white (dense clouds/smoke). Palm explains that the densest 

sections of wildfire smoke are located primarily at ground level and an altitude of about 4 

km (Palm 2016). 

Figure 26.  Vertical Profile (Height and Density) of California Wildfire Smoke 
Clouds, 28 October 2003. Source: Palm (2016). 

 

The aforementioned research publications represent just a few examples of the 

vast literature that stemmed from NASA’s ICESat mission. Undoubtedly, datasets from 
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its follow-on, ICESat-2, will motivate even more cryosphere-related, atmospheric, and 

forestry publications, including ones that make critical comparisons between current 

ICESat and future ICESat-2 datasets for long-term trend analyses. 

10. Mercury Surface, Space Environment, Geochemistry, and Ranging 
Orbiter 

Abshire pointed out that “in March 2011, the Mercury Surface, Space 

Environment, Geochemistry, and Ranging Orbiter (MESSENGER) became the first 

spacecraft in history to orbit our innermost planet” (Abshire 2011, 41). He added that the 

instrument suite underneath the probe contained a magnetometer; energetic particle, 

neutron, gamma ray, x-ray, atmospheric, surface, and plasma spectrometers; a dual wide- 

and narrow-angle imaging system; and the Mercury Laser Altimeter (MLA) (Abshire 

2011). MESSENGER’s magnetometer occupies the position at the tip of the extended 

pole in Figure 27, and the MLA sits about midway on the underside of the spacecraft’s 

main body. 

Figure 27.  Artist Impression of MESSENGER Orbiting Mercury. Source: 
Hopkins University Applied Physics Lab/Carnegie Institution (2016). 

 
Enhanced color photograph overlay taken near Hokusai Crater. 

Cavanaugh et al. processed MLA’s range calculations and boresight pointing 

angles, in conjunction with spacecraft orbital data, to precisely characterize Mercury’s 
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surface topography (Cavanaugh et al. 2007). Additionally, Neumann’s analysis of surface 

reflectance measurements led to the theory that anomalous bright and dark spots on 

Mercury’s northern facing slopes indicated the possible presence of subsurface water-ice 

insulated by organic volatiles, both deposited by foreign bodies after impact with the 

planet (Neumann et al. 2012). 

Figure 28 is a MLA-derived topographic map of Mercury from 4° South to 90° 

North on a cylindrical projection with resolution at 1 km per pixel (NASA/John Hopkins 

University/Carnegie Institute 2016). On the elevation scale to the right, dark blue denotes 

the lowest regions (-5 to -3 km) and brown denotes the highest points (2.5+ km), also: 

light blue (-2 km); green (-1 km); yellow (~0 km); orange (1 km); and red (2 km).  

Figure 28.  Topography Map of Mercury’s Northern Hemisphere. Source: NASA/
Johns Hopkins University/Carnegie Institution (2016). 

 

MLA had an 8 Hz, two-stage, Nd:YAG laser transmitter that produced a 1064 nm 

(infrared) pulse with 20 mJ of energy and a 6 ns pulse-width; it weighed 7.4 kg and 

required 23 watts of operating power (Abshire 2011). A rugged space-hardened LiDAR 

indeed, the MLA achieved more than laser altimetry and mapping of Mercury.  

During a distant-Earth flyby in 2005, MLA successfully completed a two-way 

laser linking experiment with the NASA Goddard Geophysical and Astronomical 

Observatory at a range of over 23.9 million km (Smith et al. 2006). Smith et al. 

mentioned that MLA transmitted laser pulses to Earth during three observation periods 

divided across three nonconsecutive days (2006). They added that Earth received brief 

transmissions of 16 consecutive signals on 24 and 27 May and a transmission of about 26 
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consecutive signals on the 31st (the last day of testing) (2006). Meanwhile, NASA’s 

Earth-based laser transmitted its own pulses toward MESSENGER, which the MLA 

detector received about 0.35 ms earlier than predicted throughout the entire testing period 

(2006). By comparison, transmissions from MESSENGER reached Earth approximately 

0.34 ms early on the 24th/27th and 0.14 ms early on the 31st (2006). Overall, laser-

acquired range measurements between the spacecraft and Earth were accurate to within 

±20 cm at almost 24 million km (2006). This ground breaking asynchronous laser 

ranging and communications experiment “established a distance record for laser 

transmission and detection and accomplished a two-way laser link at interplanetary 

distance” (Smith et al. 2006, 53). 

Once at Mercury, MESSENGER maintained a highly elliptical and nearly polar 

orbit with a 300 km periapsis in the northern hemisphere and a 15,000 km apoapsis in the 

southern hemisphere (Cavanaugh et al. 2007). Cavanaugh et al. noted that this orbit’s 

purpose was to protect the valuable underside of the probe from the intense solar 

radiation (2007). Moreover, MESSENGER’s orbital parameters ensured that the planet 

itself shielded the scientific instruments when the probe’s topside solar-screen faced 

away from the sun (2007). Of course, the distant apoapsis explains the sparse LiDAR 

measurements south of the equator, since MLA’s maximum operating limits were 1,200 

km at nadir and 800 km at slant range (Cavanaugh et al. 2007). MESSENGER exceeded 

its expected mission duration by three years, ultimately crashing into Mercury’s surface 

on 30 April 2015 (NASA/Johns Hopkins University/Carnegie Institution 2016). 

11. Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations 

Capturing first light on 7 June 2006, the Cloud-Aerosol LiDAR and Infrared 

Pathfinder Satellite Observations (CALIPSO) spacecraft is NASA Langley Research 

Center’s Earth-observing and atmospheric-polarization LiDAR platform (Abshire 2011). 

Abshire states that CALIPSO exploits three co-aligned scientific instruments: a wide-

field camera, an imaging infrared radiometer, and a polarization LiDAR (2011). He also 

notes that a star tracker assembly ensures accurate spacecraft and instrument pointing 

from CALIPSO’s sun-synchronous 98.2° orbit at an altitude of 700 km (Abshire 2011). 
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CALIPSO currently belongs to the Afternoon Constellation (A-train) that consists of it 

plus the Aqua, Aura, and CloudSat satellites (Winker and Hunt 2007). Figure 29 is a 

rendition of CALIPSO and a diagram of its sensor payload. 

Figure 29.  Artist Rendition of CALIPSO On-Orbit and Diagram of Payload 
Optics. Adapted from NASA (2016a). 

 

The LiDAR is officially named the Cloud-Aerosol LiDAR with Orthogonal 

Polarization (CALIOP); CALIOP shall not be used hereafter in this review to avoid 

confusion with the spacecraft’s similar acronym. In short, this “first polarization LiDAR 

in orbit is a three-channel elastic-backscatter LiDAR optimized for aerosol and cloud 

profiling” (Winker and Hunt 2007, 1). Winker and Hunt discuss how CALIPSO still 

welds one remaining of two linear-polarizing Nd:YAG laser transmitters that produce a 

combined pulse of 1064 nm (infrared) and 532 nm (green) wavelengths, with a total 

energy of 220 mJ (2007). Furthermore, the system operates at 20 Hz with pulse-widths of 

20 ns, and ground footprints are 70 m in diameter and spaced 333 m apart (2007). 

The avalanche photodiode infrared detector disregards the polarization of the 

1064 nm return signal (Winker and Hunt 2007). Winker and Hunt describe that the 532 

nm detector employs two separate channels of photomultiplier tubes to measure the 

parallel and perpendicular components of polarization within the returned backscatter 

(2007). They go on to say that the returning wavelengths are sampled at 10 Megahertz 

(MHz) with an initial resolution of 15 m, then receiver electronics throttle resolution to 

60 m for the infrared channel and 30 m for the parallel and perpendicular green channels 
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(2007). To further ease the downlink, additional data reductions are performed by 

onboard processors that average the top sections of the vertical LiDAR profiles to 

compress the data prior to transmission (Winker and Hunt 2007). 

Overall, CALIPSO continues to provide researchers with highly versatile LiDAR 

products. For example, Hu et al. used derived sea-surface laser backscatter along with 

wind-speed measurements from Aqua’s Advanced Microwave Scanning Radiometer—

EOS (AMSR-E) to examine global wave slope variances and near-surface wind speeds 

(Hu et al. 2008). Battaglia examined CALIPSO wavelength and polarization data for 

three areas of relatively shallow water: Kure Atoll, the Bahamas, and Sequoia National 

Forest (Battaglia 2010). He recognized a strong correlation between water depth and 

cross-polarization of the 532 nm return, enabling him to estimate water depth based on 

the identifiable LiDAR return signatures for shallow waters less than 20 m deep 

(Battaglia 2010). 

Thanks to Hu, scientists are able to capitalize on a new calibration technique 

called Elevation in Tail that substantially improves the accuracy of CALIPSO laser-

altimetry data (Hu 2007). Elevation in Tail compares the transient responses of the 

photomultiplier detectors to the waveform shapes of pulses returned from the surface 

(2007). Further processing can be applied to improve the accuracy of elevation data 

products from CALIPSO or a comparable LiDAR with polarization capabilities (Hu 

2007). 

Lastly, Figure 30 shows a CALIPSO vertical LiDAR profile of wildfire smoke 

clouds near Springerville, Arizona. The plumes tend to maintain an approximate altitude 

of 4.5 km, similar to the earlier ICESat profile of California wildfire smoke. The LiDAR 

profile is superimposed on a MODIS Terra image captured nine hours later by the Terra 

satellite’s imaging spectroradiometer (NASA 2016a). This is but one sample of the 

tremendous amount of useful atmospheric LiDAR data that CALIPSO has collected over 

the course of its mission: 10 years and counting. 
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Figure 30.  A CALIPSO LiDAR Vertical Profile of Arizona Wildfire Smoke. 
Source: NASA (2016a). 

 

12. Lunar Reconnaissance Orbiter/Lunar Orbiter Laser Altimeter 

On 23 June 2009, the Lunar Reconnaissance Orbiter (LRO) achieved its elliptical 

and polar orbit around the Moon, where the spacecraft maintains periselene and 

aposelene at 20 km and 165 km, respectively (NASA 2007a). In addition to mapping 

lunar topography and establishing a selenocentric coordinate system, LRO generates day 

and night temperature maps, captures high-quality imagery, and measures the Moon’s 

reflectivity coefficient (albedo) (Keller, Chin, and Morgan 2007). Keller, Chin, and 

Morgan comment that LRO focuses specifically on the polar regions, searching for 

perpetually dark areas which may contain traces of water-ice (2007). 

The satellite operates seven scientific instruments, of particular interest is the 

Lunar Orbiter Laser Altimeter (LOLA), a space LiDAR conducting a dual mission of 

general exploration and preliminary research in support of future robotic and manned 

lunar landings (Keller, Chin, and Morgan 2007). Specific tasks include “measuring 

potential landing site slopes and surface roughness” (NASA 2007a). Figure 31 is a 

rendition of LRO on orbit (left) and a LOLA-derived map of surface slopes near the lunar 

south pole. The slope map, with the south pole in the center, shows poleward of 75 

degrees south latitude and is color-coded from no-slope (purple) to 30 degrees of slope 
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(red). Generally, the areas of steeper slope (15°–30°) define the outlines of impact craters 

in this region. 

Figure 31.  Artist Rendition of LRO and Slope Map of the Lunar South Pole. 
Source: NASA Goddard (2016b). 

 

By design, this LiDAR is somewhat similar to the Mars Orbiter and Mercury 

Laser Altimeters, MOLA and MLA respectively (Keller, Chin, and Morgan 2007). 

However, LOLA does more than uphold the trend of Q-switched, diode-pumped, 

Nd:YAG lasers in space-based LiDAR operations. With diffractive optical elements 

producing five total beams, it is “the first multi-beam space LiDAR” (Abshire 2011, 38). 

Abshire remarks that each beam produces an individual 5 m diameter footprint, and the 

five footprints are spaced 25 m apart in the shape of a cross (2011). This unique feature is 

how LOLA can measure surface slope and elevation as it orbits the Moon (2011). More 

specifically, the 28 Hz LOLA functions at 1064 nm (infrared) with pulse energies of 3 mJ 

and a 5 ns pulse-width (2011). As the five returning laser pulses enter the 14-cm receiver 

telescope, an optical fiber array and timing electronics direct each to an individual silicon 

avalanche photodiode detector (Abshire 2011). 
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Figure 32 provides a LOLA-derived elevation map of the two sides of the Moon. 

Elevation in km is color-coded based on a mean lunar radius of 1,738 km. This image 

distinguishes well between the generally flatter “lowlands” of the nearside and the higher, 

yet heavily cratered, farside. 

Figure 32.  Lunar Reconnaissance Orbiter: Detailed Topography of the Moon. 
Adapted from NASA Goddard (2016b). 

 

Now, one could reason that LOLA has completed the earlier works of the Apollo 

and Clementine laser altimeters. However, surface topography is only one capability of 

this built-for-space LiDAR: “Laser systems can be used to track and communicate with 

spacecraft in deep space to achieve better performance at lower power and with smaller 

size apertures than conventional microwave systems” (Sun et al. 2013, 1865) 

Appropriately, Sun et al. successfully demonstrated the distant-communications ability of 

the LOLA receiver by conducting one-way digitally modulated (4096-ary PPM) laser 

transmissions employing Reed Solomon coding during some of the transmissions (2013). 

They mentioned that after encoding, the Next Generation Satellite Laser Ranging ground 

Nearside  Farside 
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station transmitted essentially error-free data at rates between 200 and 300 bits per 

second (2013). LRO’s distance from Earth was about 380,000 km during the experiment, 

and the spacecraft returned accurate time tags for every laser pulse that it received (Sun et 

al. 2013). 

Additionally, laser backscatter from LOLA offers a means to determine the 

albedo of various lunar surfaces (Lucey et al. 2014). Figure 33 gives the whole-surface 

albedo of the Moon at 1064 nm on a cylindrical projection. According to Lucey et al., the 

majority of the surface has an albedo of 0.29 (2014). They continue by informing us that 

the high of 0.33 corresponds to the farside’s northern hemisphere below the pole, and the 

0.24 low aligns almost completely with the segment of the nearside that directly faces 

Earth (Lucey et al. 2014). The LiDAR systems of this section each represent a unique and 

tremendous contribution to the sciences of laser detection and ranging, space systems 

operations, and remote sensing. Still, this review would not be complete without a look at 

some foreign LiDAR space platforms and a glimpse into the future. 

Figure 33.  The Geometric Albedo of the Moon at 1064 nm. 
Source: Lucey et al. (2014, 119). 
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C. OTHER PLATFORMS 

1. l’Atmosphere Par LiDAR Sur Saliout (“Space Station Atmospheric 
LiDAR”)—French/Russian LiDAR on the Mir Space Station 

L’atmosphere par LiDAR sur Saliout (ALISSA) was a French atmospheric 

LiDAR system designed by the Service d’Aéronomie and installed on the Priroda module 

of the Mir Space Station in 1996 (Chanin and Hauchecorne 1991). Figure 34 is a diagram 

of the Priroda module and its location on the Mir station. ALISSA’s primary mission, as 

described by Chanin and Hauchecorne, was to capture detailed descriptions of the 

vertical structures of clouds, including the uppermost altitudes of cloud tops at a 

resolution of approximately 150 m (1991). They added that the LiDAR’s four Nd:YAG 

lasers synchronized at 50 Hz to produce a combined 40 mJ, 532 nm (green) pulse; the 

lasers could also operate individually at 10 mJ (1991). The receiving telescope was 40 cm 

in diameter, and reference prisms and a secondary mirror sat in front of the telescope to 

correct for mechanical errors during space flight (Chanin and Hauchecorne 1991). 

Figure 34.  The Mir Space Station and the Priroda Module with the ALISSA 
LiDAR. Adapted from Dismukes (2013). 

 

The Russian Institute of Applied Geophysics maintained responsibility for 

ALISSA (McCormick 2005). McCormick emphasized that the system’s controllers only 
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employed test mode during the first two years, then ALISSA endured a prolonged 

interruption in operations due to issues internal to the space station (2005). He went on to 

say that in 1999, ALISSA operated for approximately two months and collected 25 

additional laser backscatter datasets that indicated the presence of multi-layered clouds, 

the boundary layer, and orographic waves (2005). In conjunction with the earlier success 

of LITE, ALISSA further demonstrated “that even a low power LiDAR carried on an 

operational satellite could provide useful information for cloud description, including the 

description of the aerosol boundary layer” (McCormick 2005, 381).  

2. Hayabusa Asteroid Probe—Japan 

In 2003, JAXA launched the Hayabusa Asteroid Explorer, code named MUSES-

C, to study and return samples from asteroid 25143 Itokawa (Japan Aerospace 

Exploration Agency [JAXA] 2016). The mission ended successfully in 2010 when 

Hayabusa returned to Earth, allowing Japanese scientists to recover and authenticate the 

Itokawa samples (JAXA 2016). See Figure 35. 

Figure 35.  Hayabusa (MUSES-C) and Sample from the Itokawa Asteroid. 
Source: Japan Aerospace Exploration Agency [JAXA] (2016). 

 

Hayabusa featured a Xenon-ion engine, a near-infrared spectrometer, a sample-

collecting robot, and an autonomous navigation system (JAXA 2016). According to 

JAXA, this human-free navigation system incorporated an optical camera and a laser 
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altimeter (JAXA 2016). In addition to successfully navigating the spacecraft in vicinity of 

the asteroid, Hayabusa’s LiDAR and camera suite obtained the measurements necessary 

for scientists to calculate the bulk density of Itokawa (Mukai et al. 2007). The 

conclusions by Mukai et al. were a mass of 3.54 x 1010 kg with 6% error, a density of 1.9 

g/cm-3 with 9% error, and a bulk porosity of about 40% (Mukai et al. 2007).  

The Hayabusa LiDAR was a Q-switched, laser-diode, Nd:YAG transmitter that 

operated at 1064 nm (infrared) (JAXA 2016). During testing, the actual wavelength 

produced varied by about 0.3 nm per degree of temperature change, so the developers 

installed a thermostat and heater specifically for the LiDAR’s transmitter (Mukai et al. 

2007). Mukai et al. mentioned that frequent temperature fluctuations still affected the 

laser during spaceflight which resulted in intensity variations among the outgoing pulses 

(2007).  

The Hayabusa LiDAR’s minimum range was 50 m due to a small angular offset 

between the laser transmitter and receiver (Abe et al. 2006). Abe et al. remarked that the 

predicted maximum range was 50 km, and the first mission-recorded laser return 

occurred at a spacecraft distance of 49 km from the asteroid (2006). They described how 

a timing clock frequency of 75 MHz afforded approximately 1 m accuracy at the 

minimum operating range of 50 m; laser accuracy was 2 m at slightly over 3 km (2006). 

Abe et al. admitted that Hayabusa’s LiDAR detected 1,665,548 of the 4,107,104 

transmitted pulses, about 41%, during the asteroid-orbiting and pre-landing phase from 

10 September to 25 November 2005 (2006). Unfortunately, spacecraft pointing accuracy, 

and with it the number of returned laser pulses, decreased substantially after 2 October 

due to a major attitude control failure: two of three reaction wheels (Abe et al. 2006).  

D. THE WAY AHEAD FOR LiDAR IN SPACE 

1. NASA—Next Generation Spacecraft Landing Integrated LiDAR 

Space Shuttle precision docking using TriDAR represented a major leap forward 

in automated rendezvous technology. Building on this success, NASA continues the 

development of a multi-LiDAR spacecraft landing system for future space exploration 

missions (Amzajerdian et al. 2015). Amzajerdian et al. state that the Autonomous 
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Landing and Hazard Avoidance Technology Project (ALHAT) endeavors to successfully 

integrate its chosen trio: an advanced laser altimeter, a Doppler LiDAR, and a 3D Flash 

Imaging LiDAR (2015). Once installed onboard future spacecraft, these systems will 

work together to achieve “autonomous precision landing and hazard avoidance 

capabilities” through highly accurate and simultaneous measurements of spacecraft 

altitude, relative velocity, orientation, and proximity to terrain and other navigational 

hazards (Amzajerdian et al. 2015, 1). 

In 2014, the ALHAT integrated LiDAR system demonstrated itself on the 

underside of a Huey helicopter and on the rocket-powered Morpheus unmanned test 

vehicle, as shown in Figure 36. The continuous-wave Navigation Doppler LiDAR uses 

frequency-modulated laser pulses segmented into up-ramp chirp, constant frequency, and 

down-ramp chirp to determine accurate ranges and relative velocities (Amzajerdian et al. 

2015). This report comments that the pre-modulated signal is a single 1.55 micron 

(infrared) pulse that is split after modulation and transmitted simultaneously in three 

separate directions (2015). It also notes that the Doppler velocity during craft movement 

is determined through a comparison of the up-ramp and down-ramp chirp frequencies; 

the constant (center) frequency is used to confirm the calculated Doppler velocities, 

helping the system disregard erroneous measurements (2015). Next, a field-

programmable gate array applies fast Fourier transforms to the different frequency 

components of all three return signals in order to calculate actual spacecraft range and 

line-of-sight velocity (2015). Additional statistics for the Doppler LiDAR are as follows: 

velocity resolution of 0.2 cm/sec, line-of-sight resolution of 17 cm, maximum range of 

2,200 m, and a data rate of 20 Hz (Amzajerdian et al. 2015). 
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Figure 36.  Testing of Integrated LiDAR Landing Systems on a Morpheus 
Vehicle. Source: Amzajerdian et al. (2015, 9). 

 

The long-range laser altimeter will complement the Doppler LiDAR at ranges less 

than 2 km, but it will function exclusively at greater distances (Amzajerdian et al. 2015). 

Amzajerdian et al. describe that this multi-return, automatic threshold detection, laser 

altimeter operates at 1.57 microns (infrared), and it is capable of providing 0.5 m 

precision at altitudes above 20 km to correct for inertial measurement unit drift during the 

approach phase of a landing (2015). Furthermore, they report that close-up range 

resolution is on the order of 5 cm, and the data rate frequency is 30 Hz (2015). The laser 

altimeter supplies accurate terrain contours that will enable successful terrain-relative 

navigation with no human inputs (Amzajerdian et al. 2015).  

Lastly, the 3D Flash Imaging LiDAR is designed for object recognition of hazards 

greater than 29 cm at a maximum slant range of 2 km; each return of the 1.06 micron 

(infrared) pulse is measured individually by a Readout Integrate Circuit at the detector 

(Amzajerdian et al. 2015). Amzajerdian et al. contend that this is a tremendous 

improvement over traditional laser-imaging object-recognition technologies which 

employ a single detector and scan using a raster pattern (2015). Here, the 128 x 128 pixel 

detector array achieves an imaging rate of 30 frames per second (2015). Additional 

statistics for the 3D Flash Imaging LiDAR are as follows: 50 mJ pulse energy, 8 ns pulse-
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width, 100 mm receiver aperture, 1,800 m range at nadir, and 8 cm range precision 

(Amzajerdian et al. 2015). 

2. NASA—Advanced Topographic Laser Altimeter System and Swath 
Imaging Multi-polarization Photon-counting LiDAR 

NASA’s ICESat-2 will “continue polar ice topography measurements with 

improved precision laser-ranging techniques” as a follow-on to the success of ICESat 

(Troupaki et al. 2015, 1). Troupaki et al. explain that the Advanced Topographic Laser 

Altimeter System (ATLAS) comprises ICESat-2’s entire scientific instrument loadout 

(2015). They believe that the micro-pulsed, multi-beam, ATLAS will deliver a significant 

improvement over ICESat’s single-beam GLAS LiDAR (2015). Troupaki et al. mention 

that this LiDAR will work at 532 nm (green) and 10 Kilohertz (KHz), splitting each pulse 

into six individual beams, as seen in Figure 37 (2015). Originating as a 16-beam concept, 

the ATLAS design subsequently dropped to nine and, then, to its current six-beam 

configuration due to changing mission requirements (2015). The full-width half-

maximum pulse duration is less than 1.5 ns, and full output power exceeds 9 watts 

(Troupaki et al. 2015). 

Figure 37.  Drawing of ICESat-2 and its Six-beam ATLAS LiDAR. Source: 
NASA Goddard (2016a). 

 
Beam pair spacing is 3.3 km (NASA Goddard 2016a). 
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Fibertek’s photon-counting ATLAS overcomes the complications of orbital 

altitude versus laser power through low-photon detection (6 beams = 1/6 of the total 

power each, about 1.5 watts) (Troupaki et al. 2015). Troupaki et al. state that an Optical 

Filter Assembly is included to mitigate the increased detection of solar noise inherent to 

photon-sensitive LiDAR systems (2015). LRO/LOLA broke the decades-long tradition of 

spacecraft welding single-beam laser altimeters. ATLAS follows in the footsteps of 

LOLA by ushering in a new era of space-borne LiDAR: a metamorphosis toward 

advanced multi-beam systems with photon-counting capabilities (Yu, Stephen et al. 

2010).  

ICESat-2 and ATLAS are part of NASA’s organizational trend toward wide-

swath photon-counting LiDARs for space-based topography and atmospheric-sensing 

missions (Yu, Stephen et al. 2010). SIMPL is a theoretical satellite laser-imaging concept 

predicated upon the actual Airborne Instrument Development Incubator program named 

Slope Imaging Multi-polarization Photon-counting LiDAR (same acronym). The airborne 

SIMPL program arose from NASA’s desire to “advance key technologies and mitigate 

some of the risk associated with the LiDAR Surface Topography (LIST) mission” (Yu, 

Krainak et al. 2010, 1). Furthermore, NASA’s aerial-SIMPL analyses of forest canopy 

structure and available biomass were successful due to the high resolution, dual 

wavelength, and polarization properties of the airborne SIMPL LiDAR (Yu, Krainak et 

al. 2010). Results from the airborne SIMPL experiment have generated a tremendous 

anticipation for future ICESat-2 data (Harding, Dabney, and Valett 2011).  

Figure 38 shows point clouds for the four polarization channels (Green Parallel, 

Green Perpendicular, NIR Parallel, NIR Perpendicular) of SIMPL beam three of four 

during a Learjet overflight of Lake Erie in winter 2009 (NASA 2016b). Per NASA, the 

segment is an approximately 260 m long strip across an area with heavy, yet young, sea-

ice coverage (2016b). Additionally, a video frame composite, taken during flight, 

provides a visual representation of the segment (2016b). The four general types of sea-ice 

present in the data are labeled by letters: (A) dark nilas ice, (B, E) fresh gray-white ice, 

(C) skim ice over water, and (D) fractures/leads of open water within the ice sheet 
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(2016b). The perceived slope exhibited by the laser points stems from uncorrected roll 

bias during flight and not from the actual topography of the study area (NASA 2016b). 

Figure 38.  Data Segment of Beam #3 Collected During Airborne SIMPL Flight 
Over Lake Erie, 25 February 2009. Source: NASA (2016b). 

 

Although it will lack the polarization aspect of SIMPL, ICESat-2 is an attempt at 

laser imaging an ever-larger swath from space that intends to satisfy at least some of 

LIST’s mission requirements and NASA’s expectations: 
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(1) A medium cost mission to be launched by NASA between 2016–2020; 
(2) a single-instrument payload carrying an imaging lidar at low Earth 
orbit; (3) one-time global mapping of land, ice sheet and glacier 
topography and vegetation structure through the duration of the mission; 
(4) observe topography and vegetation structure change through time in 
selected areas; and (5) achieve five meter horizontal resolution, 0.1 m 
vertical precision, and absolute vertical accuracy for ground surface 
topography including where covered by vegetation. (Yu, Krainak et al. 
2010, 1) 

Figure 39 is a diagram of the conceptual principles behind a space-based Swath 

Imaging Multi-polarization Photon-counting LiDAR platform. Numerous fiber lasers and 

single-photon sensitive detectors are integrated with advanced timing electronics to 

generate enhanced measurements of surface topography and reflectance (Harding et al. 

2007). The theoretical SIMPL space-LiDAR will simultaneously transmit laser 

wavelengths of 532 nm (green) and 1064 nm (infrared), and the received backscatter will 

be depolarized into components parallel and perpendicular to the original pulse in order 

to determine surface type and roughness based on photon scattering due to wavelength 

and polarization (Harding et al. 2007). 

Figure 39.  Satellite SIMPL Push-Broom Laser Altimeter Measurement 
Approach. Source: Harding et al. (2007, 1–2). 
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3. NASA—Global Ecosystem Dynamics Investigation LiDAR 

In 2018, NASA intends to end the almost 17-year absence of a space station–

based LiDAR which began in 2001 when Mir, with ALISSA onboard, reentered the 

Earth’s atmosphere. The plan is to install a laser system that will measure the biomass of 

the Earth’s forests from the ISS, as it orbits at approximately 410 km with 51.65 degrees 

of inclination (NASA Science Missions 2015). NASA’s Global Ecosystem Dynamics 

Investigation LiDAR (GEDI) is specifically designed to measure the heights of trees (to 

within 1 m accuracy) and the amount of carbon stored within them and other vegetation 

(2015). The data will be analyzed to generate a better understanding of available forest 

biomass and habitat quality (NASA Science Missions 2015). 

Probable reasons for the chosen host platform are the operational and size 

requirements of the 14-pulse system, also the majority of the world’s critical forests lie 

between 51° north and south latitudes. The ISS is the ideal, and possibly the only, space 

platform that can currently support the GEDI. According to NASA, the GEDI’s mass, 

power requirement, and operating wavelength are 230 kg, 516 watts, and 1064 nm, 

respectively (2015). NASA intends to park the GEDI at the exposed facility of the 

Japanese Experiment Module, red circle in Figure 40 (NASA Science Missions 2015). 

Figure 41 is a simple diagram of the system. 

Figure 40.  ISS and Future Location of GEDI. Source: Dubayah (2014). 
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Figure 41.  Diagram of the GEDI. Source: Dubayah (2014). 

 

Yearly, the GEDI system will collect over 15 billion laser waveform profiles; 

gridded estimates of biomass have a predicted resolution of 500 m (Dubayah 2014). 

GEDI data will be analyzed to identify and describe the changes in forest biomass due to 

prolonged stressors, such as climate change, drought, forestry, and other human 

interactions (NASA Science Missions 2015). Three laser transmitters and splitting optics 

will produce the GEDI’s 14 parallel beams, and individual laser ground spots will 

measure approximately 25 m in diameter, with 60 m along-track and 500 m across-track 

spacing (creating a 60 m X 6.5 km swath) (Dubayah 2014). This is illustrated in Figure 

42. Notice that the middle, nadir-facing, laser will operate at full power and has a 

narrower across-track swath for stronger signal returns. Conversely, the two outer lasers 

trade power for wider coverage, so they will collect more, lower-amplitude, waveform 

profiles. 
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Figure 42.  GEDI’s Three-sectioned, 14-Beam, Swath. Source: Dubayah (2014). 

 

4. Sigma Space—Single Photon-counting 3D LiDAR 

Sigma Space Corporation is striving to push the advantages and the altitude of 

single photon detection ever higher. Two of its recently developed 3D-imaging LiDARs 

appear promising for future space-based laser altimetry and topographic applications: the 

High Resolution Quantum LiDAR System (HRQLS) and the High Altitude LiDAR 

(HAL). The medium-altitude HRQLS can detect single photons at an altitude of over 5 

km, and the HAL can currently operate at slightly above 8.5 km (Degnan et al. 2013). 

The idea behind both systems is to “provide contiguous few decimeter resolution 

topographic coverage on a single overflight at aircraft speeds up to about 220 knots (407 

km/hr)” (Degnan et al. 2013, 3).  

Instead of single- or even multi-pulse lasers, these systems emit hundreds of 

pulselets at frequencies up to 32 KHz with a dedicated timing mechanism for each 

pulselet (Degnan et al. 2013). Degnan’s pulse-widths are in picoseconds and the imaging 

rate is millions of 3D pixels a second (2013). Figure 43 shows the large-area DEM from a 

12-hour airborne HRQLS survey of a rugged and densely forested 1,700 km2 section of 

Garrett County, Maryland. Degnan et al. disclose the survey parameters: 2 km flight 
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altitude, 0.81 km single flight line width, and an average aircraft velocity of 278 km/hr 

(Degnan et al. 2013).  

Figure 43.  HRQLS Airborne LiDAR Survey of Garrett County, Maryland 
Imposed on a Google Earth Map. Source: Degnan et al. (2013, 4). 

 

The pulselet concept applied by Sigma Space LiDAR technologies stems from 

Degnan’s first-generation research at the NASA Goddard Space Flight Center just prior 

to his retirement from NASA in 2003 (Degnan 2002). Degnan concludes that for a 

particular telescope aperture and a set level of transmitter power, traditional high-energy 

low-frequency laser pulses perform significantly worse for laser-altimetry sampling than 

a series of low-energy high-frequency pulses used in conjunction with advanced timing 

receivers and photon-counting detectors (2002). In the same report, Degnan affirms that 

employing small receiver telescopes improves the system’s ability to distinguish between 

legitimate ground returns and noise from other photon sources, primarily the Sun 

(Degnan 2002). Under his direction as Chief Scientist, Sigma Space continues to improve 

on these 3D photon-counting LiDAR systems. 

All things considered, Sigma Space’s next generation of single photon-counting 

LiDAR is designed with future space operations in mind. With single photon sensitivity, 

“contiguous, high resolution topographic mapping and surveying on a single overflight 
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becomes possible with very modest laser powers and telescope apertures—even from 

orbital altitudes” (Degnan et al. 2013, 1). According to Degnan et al., these systems will 

possess the higher spatial resolutions and wider swath coverages required to expedite 

large-scale extraterrestrial topography missions without overly sacrificing precision and 

accuracy (2013). They also offer the improved foliage, water, and atmospheric 

penetration critical for Earth-targeted forestry, bathymetry, climate/pollution monitoring, 

and meteorology operations from orbiting satellites (Degnan et al. 2013). 

5. Multi-wavelength LiDAR for Terrain Classification 

Although multi-wavelength LiDAR technology remains primarily restricted to 

low-flying airborne platforms, it represents a growing field of interest and capability. The 

predominance of LiDAR-in-space has been monochromatic, with exceptions mainly for 

atmospheric purposes: Shuttle LITE, Phoenix Mars Lander, ICESat, CALIPSO, and 

ALISSA. Spaceborne spectral LiDAR systems may one day collect new information on 

extraterrestrial landscapes that thus far have only been visited by single-wavelength 

platforms: Mercury, Mars, the Moon, and near-Earth asteroids. Understandably, the 

ground work must occur first, which means spectral classification studies on the unique 

features of our Earth, including manmade objects and vegetation. 

Fernandez-Diaz et al. recently published a paper titled “Capability Assessment 

and Performance Metrics for the Titan Multispectral Mapping Lidar.” The paper 

discusses two years of Optech Titan testing and mapping campaigns that “demonstrate 

capabilities to classify land covers in urban environments with an accuracy of 90%, map 

bathymetry under more than 15 m of water, and map thick vegetation canopies at sub-

meter vertical resolutions” (Fernandez-Diaz et al. 2016, 8). Also, Morsy et al. have 

obtained classification accuracies of 92.51% using three normalized difference feature 

indexes (NDFI) for separate land/water and vegetation/built-up area analyses (Morsy et 

al. 2016). Their NDFIGreen-NIR, NDFIGreen-MIR, and NDFINIR-MIR indexes are calculated 

from the spectral intensity values of a Titan dataset collected at two locations in Ontario, 

Canada (2016). Morsy et al. convert the 3D point cloud into a raster with grids of 1 m cell 

size, assigning each grid a mean intensity value before calculating the indexes (2016). 
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They conclude that NDFIGreen-MIR is better for distinguishing vegetation, whereas 

NDFINIR-MIR is better for built-up (urban) areas (2016). All three of their NDFIs perform 

poorly (32.19%–40.31%) at separating land from water, unless the points are restricted 

by “number of returns” (2016). Inclusion of the “number of returns” attribute 

significantly reduces the misclassification of water points as vegetation, increasing 

success to approximately 97% (Morsy et al. 2016).  

In his thesis, Judson Thomas applies a new spectral LiDAR technique for terrain 

classification using the ENvironment for Visualizing Images’ (ENVI) “n-Dimensional 

Visualizer” (N-D VIS) tool (Thomas 2015). Thomas’ data are not rasterized, and he does 

not average the intensities; the individual spectral returns for the green, NIR, and MWIR 

channels are preserved for analysis (2015). His primary focus centers on manmade 

surfaces in a suburb of Toronto, Canada: various pavements, roofing materials, road 

paint, and railway tracks (Thomas 2015). This thesis will apply a similar process in an 

effort to spectrally subclassify ground and roofing materials on the campus of the Naval 

Postgraduate School, where accurate ground truth is readily accessible. 

  



 59 

III. DATASET AND PREPARATIONS 

A. INSTRUMENT 

1. Optech Titan Multispectral LiDAR 

The Optech Titan multispectral sensor collected the aerial LiDAR data for this 

thesis. Titan employs three independent lasers with a combined ground-sampling rate of 

approximately 1 MHz (Teledyne Optech 2015). It expands on the traditional spatial 

applications of LiDAR by introducing multispectral sensing. According to the 

manufacturer, the Titan system “offers improved performance for 3D land cover 

classification, vegetation mapping, shallow bathymetry, and dense topography” 

(Teledyne Optech 2015, 3). This thesis strives to support that claim, primarily for ground 

types and roofing materials. Table 3 lists relevant information about the sensor, and 

Figure 44 is a drawing of the laser component from the specifications brochure. 

Table 3.   Some Applicable Titan Attributes. 
Adapted from Teledyne Optech (2015). 

 Wavelength Offset Beam Divergence 
Channel 1 1550 nm (SWIR) 3.5º Forward 0.35 mrad 
Channel 2 1064 nm (NIR) 0 º (Nadir) 0.35 mrad 
Channel 3 532 nm (Vis–Green) 7 º Forward 0.7 mrad 

Figure 44.  Titan Laser Drawing. Source: Teledyne Optech (2015). 
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2. Dataset Collection 

In May 2016, the National Center for Airborne Laser Mapping (NCALM), based 

at the University of Houston, flew the Optech Titan sensor over Monterey, California. 

NCALM collected multi-wavelength and waveform LiDAR data for the Remote Sensing 

Center at the Naval Postgraduate School (NPS). The complete spectral dataset has 23 

flight lines, mostly north-south tracks, spanning from the Monterey Regional Airport to 

the city of Pacific Grove. There are three laser format (LAS) files per flight line, 

corresponding to the individual 532 nm, 1064 nm, and 1550 nm channels. For this effort, 

the four north-south flight lines (12 LAS files total) that overlap the NPS campus are 

selected: FL 10, FL 12, FL 13, and FL 15, as shown in Figure 45. 

Figure 45.  Titan Monterey Dataset—Four-Selected Flight Lines and Overlap. 

 

FL’s 10 and 15 correspond to the central campus, and FL’s 12 and 13 correspond 

to the western and eastern areas, respectively. As a reference, Figure 45 provides an 
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overhead view of the four-selected flight lines, colored by relative height, and the flight 

line overlap. The dataset corresponds to terrain located in Universal Transverse Mercator 

(UTM) zone 10N, and it is referenced using the North American Datum of 1983 

(NAD83) and the North American Vertical Datum of 1988 (NAVD 88). 

B. DATA PREPARATION 

1. Flight Line Channel Merging, Boundary, and Noise Removal 

Figure 57 offers an overall roadmap of data preparation and processing, and all of 

Section B is summarized in the left hand column. The first preparation step uses a set of 

locally developed ArcGIS scripts (Titan Toolbox) to merge the three channels of each 

flight line into one LAS file and, then, clip all of the flight line boundaries. The LAS 

“point source id” field retains the original channel/flight line information for each point. 

The Titan_boundary_clip script is essential, because the laser points become overly 

spread out toward the edges of a flight line—where the laser optic’s scan angle is 

greatest, up to 60º off-nadir (Teledyne Optech 2015). Leaving the edge points will cause 

discrepancies during the upcoming nearest neighbor algorithm. The data loss due to 

clipping is insignificant, as the edges occur within the areas of flight line overlap and at 

the absolute boundaries of the point cloud (See Figure 46).  

Figure 46.  Example Titan Monterey Flight Line After Boundary Clip. 
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Figure 46 is an example of a flight line after running the Titan_boundary_clip 

script. The points with classification “0” (red) will be retained during the upcoming 

LASground script, however the edge points (classification “12’–green) will be discarded. 

Next, it is necessary to remove noise points before proceeding to spatially classify the 

point cloud. Martin Isenburg’s LAStools software suite includes a script that 

automatically removes point cloud noise. However, the raw Monterey dataset is relatively 

noise free. The manual removal of noise points from all four flight lines took less than 30 

minutes total using Applied Imagery’s Quick Terrain Modeler (QTM) software. 

2. Standard Ground, Building, and Vegetation Classification—Spatial 
Geometry Only (LASclassify) 

The basic classification process begins with establishing the ground level using 

LASground, another LAStools’ script. The following input parameters produce the best 

ground result for the NPS campus: -city mode, -offset 12, -fine. “City mode” applies a 

step height of 35 m to help distinguish flat rooftops from the ground. “Offset 12” includes 

all points 12 cm above the initial estimate as ground. “Fine mode” uses a greater number 

of points to create the initial ground estimate. After LASground, all of the points are 

classified as either “class 1–unclassified” (red points) or “class 2–ground” (green points). 

Figure 47 is a screenshot of the results of LASground near the quad and Herrmann Hall. 

Figure 47.  LASground Results for a Small Section of the NPS Campus. 
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Next, the above ground level (AGL) metric is calculated via the LASheight script 

in order to determine the height above ground for each laser point. AGL is a critical 

metric that will be relied on heavily by the upcoming spectral analysis and the ENVI 

classifiers. After running LASheight, the point cloud is ready for the LASclassify script, 

which will separate the unclassified points that correspond to buildings and vegetation. 

LASclassify analyzes neighboring points to identify planar structures (buildings) and 

rough surfaces (vegetation). The result is a point cloud now with four basic 

classifications: red–unclassified (1), green–ground (2), dark blue–vegetation (5), and 

cyan–buildings (6). Note that this autonomous, spatial-only, classifier is limited and does 

result in discrepancies. For example, in Figure 48 the rough clay-tiled roof and the walls 

of Herrmann Hall are misclassified as vegetation in some areas or left unclassified. 

Figure 48.  Raw Results of the LASclassify Script. 

 

Thomas’ statement is still true: “To provide increased fidelity to the follow on 

spectral classification, the results of automatic classification tool, LASclassify, require 

manual correction” (Thomas, 2015, 25). Here, the primary focus of manual correction is 

to fix the portions of buildings previously misclassified as vegetation. Also, we classify 
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as many unclassified (red) points as possible into either the vegetation or building 

categories. This will allow our spectral analysis to focus directly on the subclassification 

of specific ground types and manmade materials, instead of trying to separate out 

misclassified roofing materials from the vegetation class. No new classifications are 

established manually, this is for correction only. Figure 49 is the same area as Figure 48 

after manual correction. Manual correction is accomplished in Quick Terrain Modeler by 

highlighting a region with the polygon selection tool and using the “set classification in 

area” option. 

Figure 49.  Corrected Results of the LASclassify Script. 

 

Before proceeding to the nearest neighbor script, the analysis area is chipped out 

from the four full-length flight lines. The analysis area contains the NPS campus, a 

section of Monterey Beach, and a buffer zone. The buffer zone includes CA Highway 1 

to the south, the ocean to the north, and the two side-streets to the east and west of the 

campus. Figure 50 is a Google Earth view of the analysis area outlined in red. And, 

Figure 51 displays the analogous point cloud in QTM, colored by classification. Lastly, 

Table 4 break downs the number of points per classification within the analysis area. 
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Figure 50.  NPS Subset in Google Earth. Adapted from Google Earth (2016). 

 

Figure 51.  NPS Subset Colored by Classification—Post LASclassify. 
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Table 4.   Point Classification Breakdown—Post LASclassify. 

Classification Color No. of Points % of Total 

1—Unclassified Red 3,401,822 22.64 

2—Ground Green 6,826,990 45.45 

5—Vegetation Dark Blue 3,970,153 26.43 

6—Buildings Cyan 823,837 5.48 

 15,022,802 100 

Overall accuracy is 77.36% (the total percentage of points that are not unclassified). 

3. Nearest Neighbor—RGB and Conversion from LAS to ASCII Files 

A local Matrix Laboratory (MATLAB) script employs the OpenTSTOOL’s 

nearest neighbor algorithm for the process of spectral incorporation. This is the principle 

step of data processing, and it makes future spectral analysis possible. First, each flight 

line file is divided back into three separate LAS files, one for each channel: C1–1550 nm, 

C2–1064 nm, and C3–532 nm. Then, for all of the laser points in each channel, the 

neighboring intensities from the other two channels are located. The two results are saved 

in the LAS “Red-Green-Blue” (RGB) attributes of the original point according to the 

following assignments: The nearest 1550 nm intensity is stored as the “Blue” field. The 

nearest 1064 nm intensity is stored as the “Red” field. And, the nearest 532 nm intensity 

is stored as the “Green” field. Of course, each point duplicates its own intensity into the 

appropriate RGB field before the remaining two fields are populated by the intensity 

values from the other wavelengths. Figure 52 illustrates this process. 

With a spatial point density of approximately 10–15 points per square meter, the 

spectral incorporation via nearest neighbor is occurring with nearly coincident points 

(spatially and temporally), so discrepancies from this process are negligible. 

Additionally, the nearest neighbor injection of spectral returns into the LAS “RGB” 

attributes produces a false-color point cloud that can be rasterized, if desired, into a 

multiband image. Figure 53 is this point cloud in QTM colored by “RGB.” Roads, 

buildings, and other manmade objects appear close to true color, and vegetation appears 
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in varying shades of red and pink (higher 1064 nm returns). Areas of water, such as the 

ocean, appear mostly dark due to weak signal returns in all channels. The coastal surf and 

the shallow NPS reflecting pool appear green, indicating stronger 532 nm returns. 

Figure 52.  Nearest Neighbor Spectral Incorporation. Source: Miller et al. (2016). 

 
“For every point in each channel, find the nearest neighbor intensities from the other 2 channels 
and store in the RGB fields” (Miller et al. 2016, 14). 

Figure 53.  NPS Point Cloud in False Color RGB—Post Nearest Neighbor. 

 



 68 

4. Final ASCII Preparations and Calculation of Vegetation Indices  

In addition to LAS files, the nearest neighbor script outputs the point cloud as text 

files, one per flight line. These ASCII files provide the input to the final script of the data 

preparation process. This is necessary for two reasons: 1). The ASCII_prep_pro script 

must append several more attributes for each data point, however the LAS file structure 

cannot accommodate the additional fields. 2) There is no direct conversion from LAS to 

ENVI standard format; LAS to ASCII to ENVI format is the only way to get the data into 

ENVI’s N-D VIS tool.  

ASCII_prep_pro is a locally developed Interactive Data Language (IDL) program 

designed to merge the separate ASCII flight line files into a collective array of data 

points, complete several additional processing steps, and output the result as a single 

ENVI file set (.dat, .hdr, and .roi files). The intermediate ASCII_prep_pro steps are as 

follows: flag a 5% subset of points, calculate vegetation indices, and append a manual 

classification attribute. A reduction factor of 20 is applied via random-sampling code to 

flag a 5% subset of the data points evenly throughout the entire scene. The remaining 

95% of the points are maintained, however the reduction flag allows them to be separated 

out during spectral analysis in N-D VIS. This permits the analyst to spectrally classify 

only the 5% subset and, then, test the abilities of various ENVI classifiers on the 

remaining 95% (e.g., K-means, Maximum Likelihood, or Spectral Angle Mapper). The 

reduction flag is appended to the data array as attribute #21 for each point: A value of “0” 

means that point is part of the 95%. A value of “1” means part of the 5% training subset. 

Figure 54 indicates how the data points will be separated by visualizing attribute #21 in 

N-D VIS; the upper line is comprised of all points with a reduction flag value of “1,” and 

the lower line contains all points with a value of “0.” 

Next, ASCII_prep_pro calculates three vegetation indices and appends them to 

the data array as attributes #18, #19, and #20. The vegetation indices will assist us in 

differentiating points as either vegetation or non-vegetation in areas where it is otherwise 

unclear. Since Titan does not carry a visible-red laser, the three available vegetation 

indices (Table 5) are the Green Normalized Difference Vegetation Index (GNDVI), 

Green Difference Vegetation Index (GDVI), and Green Ratio Vegetation Index (GRVI). 
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Table 5.   Vegetation Indices. Adapted from Richards (2013). 

Green Normalized Difference 
Vegetation Index GNDVI = (NIR - Green)/(NIR + Green) 

Green Difference Vegetation Index GDVI = NIR - Green 

Green Ratio Vegetation Index GRVI = NIR/Green 

All three are calculated for each point: Green is the 532nm intensity value—stored in the “G” 
field of a point’s RGB. NIR is the 1064 nm intensity value—stored in the “R” field. 

Appending the manual classification attribute is an optional step. In order to make 

use of this attribute, one must first export the LAS files from QTM as “XYZ” ASCII 

files. The ASCII_prep_pro script prompts for these input “XYZ” files after it asks for the 

post-nearest neighbor files. The classification of each point in the “XYZ” files is copied 

over to the matching point in the data array and saved as attribute #17. This step 

contributes a potential method of ground-truth comparison, if one is willing to manually 

classify the entire point cloud. Again, we added no new classifications to the base four 

during the earlier manual correction, making attribute #17 not applicable to this work.  

Lastly, ASCII_prep_pro formats the ASCII data into an array of the following 

dimensions: (1 x # of points x # of attributes). The array for the NPS analysis area is (1 x 

15,022,802 points x 21 attributes). The 21 attributes for each point are outlined in Table 

6. The array is automatically exported as an ENVI .dat file with accompanying header 

(.hdr) and region of interest (ROI) files. 

Table 6.   ASCII Attributes. Adapted from Miller et al. (2016). 

Field # Attribute Field # Attribute 
1 X    (UTM—meters) 12 Point Source ID 
2 Y    (UTM—meters) 13 Time (GPS Tag) 
3 Z     (meters) 14 Red 
4 Original Intensity 15 Green 
5 Return Number 16 Blue 
6 Number of Returns 17 Manual Classification 
7 Scan Direction 18 GNDVI 
8 Edge of Flight Line 19 GDVI 
9 Classification (Initial) 20 GRVI 
10 Scan Angle Rank 21 Reduction Flag 
11 Height (AGL)—8 bit relative scale from 0 (ground) to 255 
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5. Input to ENVI’s N-Dimension Visualizer (N-D VIS) 

The ENVI files are brought into the N-D VIS tool for spectral analysis by 

selecting the “visualize with new data” option. N-D VIS allows an “n” number of 

dimensions to be visualized at one time in the display window. N-D VIS is designed for 

traditional multi- and hyperspectral imagery, where an image’s wavelength bands are the 

dimensions for visualizing its pixels. Here, we have adapted N-D VIS to our LiDAR data 

currently in ENVI file format, where we will instead represent the 21 attributes as the 

dimensions and visualize laser points in this n-dimensional space. Each laser point is 

treated as an “image pixel” in our data array of 15,022,802 lines (“rows”—one per point) 

and 21 samples (“the attribute columns” of Table 6):  

Use the n-D Visualizer to locate, identify, and cluster the purest pixels and 
the most extreme spectral responses (endmembers) in a dataset in n-
dimensional space. The n-D Visualizer was designed to help you visualize 
the shape of a data cloud that results from plotting image data in spectral 
space (with image bands as plot axes)...When using the n-D Visualizer, 
you can interactively rotate data in n-D space, select groups of pixels into 
classes, and collapse classes to make additional class selections easier. 
You can export the selected classes to ROIs and use them as input into 
classification techniques. (Harris Geospatial Solutions 2017c) 

The “n-D Controls” window gives us the ability to select which of the 21 

attributes from Table 6 to study at any one time. Hereafter, we generally use the term 

bands instead of attributes to maintain consistency with ENVI and N-D VIS terminology. 

The goal of our spectral analysis, in Chapter IV, is to view the RGB spectral values 

(Bands 14, 15, and 16) of all points to identify and reclassify point clusters that 

correspond to specific ground types, vegetation, and manmade impervious surfaces. This 

represents a unique capability that is not possible with geometric classifiers, such as 

LASclassify. Additionally, spatial attributes will be exploited as necessary to assist the 

spectral classification process. For example, the AGL “height” (Band 11) will be utilized 

to separate the ocean’s surface and the seafloor and to distinguish between ground and 

roofing concretes.  

Two steps remain before the spectral subclassification can begin. First, data 

reduction is accomplished by selecting X (Band 1) and Reduction Flag (Band 21) in the 
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“n-D Controls” window. In Figure 54, the random subset of points appears as the upper 

line (Band 21 value = “1”) and is selected by circling it with the cursor. ENVI Classifiers 

will exploit the user-classified 5% subset as a training region for classifying the 

remaining 95% of points (The lower line in Figure 54: Band 21 value = “0”).  

Figure 54.  N-D VIS Data Reduction Via Reduction Flag (Band 21). 

 

X (Band 1) and Classification (Band 9) are selected to assign colors in accordance 

with the original classification outputs from the LASclassify script. The red, green, dark 

blue, and cyan scheme is temporarily preserved to maintain consistency. Classification 

colors are assigned by selecting the appropriate color in the “n-D Class Controls” 

window and circling the correct line of points according to Figure 55. Remember, 

LASclassify assigns its output classes a number designator (See Table 4). Here, our 

choice of Band 1 and Band 9 presents the points of each numbered class as lines in 

ascending order: unclassified (0), ground (2), vegetation (5), and buildings (6). If the user 

has altered any of the LASclassify number designators or manually created new classes 

with a different numbering scheme, N-D VIS would still display those classes in their 

numerically ascending order. It is important to note the minimum number of dimensions 

that N-D VIS can display is two, which is why X (Band 1) is also selected in Figures 54 

and 55. Again, the lines are actually groups of points separated by Reduction Flag (Band 

21) in Figure 54 and by Classification (Band 9) in Figure 55. 
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Figure 55.  N-D VIS Point Clusters by Initial Spatial Classification (Band 9). 

 

After applying the classification colors, the elements of the point cloud become 

distinguishable in XYZ space, band selections: X (Band 1), Y (Band 2), and Z (Band 3). 

XYZ space is now the base state for viewing the entire point cloud spatially in N-D VIS. 

Figure 56 shows the same data points as seen in Figures 54 and 55, now displayed in their 

normal x, y, and z positions instead of by classification, reduction flag value, or any of 

the other bands (dimensions). It provides a recognizable overhead view of the campus, 

similar to Figure 51. At this point, the N-D VIS session is saved as a .ndv file to establish 

a quick restoration point. This is the best way to save and restore N-D VIS work-in-

progress, so that it does not have to be exported back into ENVI or ASCII files until after 

we have run the ENVI classifiers in Chapter V. 
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Figure 56.  NPS Campus in N-D VIS XYZ Space. 
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IV. PROCESSING APPROACH 

A. ANALYSIS WORKFLOW 

Analytical software tools for the terrain classification of spectral LiDAR datasets 

remain virtually non-existent. The Optech Titan multispectral LiDAR is still a relatively 

new and unique system. Accordingly, this thesis continues the use of ENVI’s N-D VIS 

tool to identify and define spectral subclasses from three-wavelength Optech Titan point 

clouds. Chapter III details the conversion of the four-chosen flight lines from traditional 

LAS file format to ENVI file format. Figure 57 is the analysis workflow that covers the 

contents of Chapters III, IV, and V: data preparations, spectral analysis and processing 

approach (i.e., the definition of training regions), and classification results using ENVI 

classifiers. 

There are four principle software tools that make this research effort possible. The 

LAStools suite contributes the critical preparation steps of ground determination, height 

calculation, and initial spatial classification. Quick Terrain Modeler and Cloud Compare 

(CC) provide LiDAR point cloud viewing and modeling in 3D plus the ability to view, 

filter, and analyze various data attributes, such as intensity, RGB, scan angle, GPS time, 

return number, and point source id. The ENVI software suite contributes the N-D VIS 

tool for spatial and spectral analysis, as well as the necessary built-in classifiers. ENVI’s 

IDL interface allows for the quick conversion between the ASCII and ENVI file formats. 

This gives us the ability to export the completely classified point cloud from N-D VIS 

back to QTM or CC for viewing.  
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Figure 57.  Analysis Workflow for Spectral LiDAR Data. 

 



 77 

B. SPECTRAL CLUSTERING IN N-D VIS USING A 5% RANDOM SUBSET 

1. Establishing the Land, Water, and Bathymetry Interfaces 

First, we establish an intuitive color scheme in N-D VIS: Ground points are set to 

sienna, buildings to yellow, and vegetation to a medium green. Dark blue and cyan are 

used to represent water and bathymetry (ocean bottom measurements), respectively. The 

95% of points not flagged as part of the 5% training subset are considered unclassified 

and colored white. The unclassified points are hidden from view for the duration of 

analysis by unchecking the white class in the “n-D VIS Class Controls” window. This 

ensures that the upcoming spectral-clustering process is not obstructed by the 

disproportionately large number of unclassified points (14+ million). 

Identifying spectral clusters (subclasses) that correspond to specific types of 

ground, building materials, and vegetation takes place primarily in RGB space: Red 

(Band 14), Green (Band 15), and Blue (Band 16). Nevertheless, we distinguish the water 

and bathymetry subclasses using Z (Band 3), original Intensity (Band 4), and AGL (Band 

11). Figure 58 is a N-D VIS screenshot showing the distinctive land, water, and 

bathymetry interfaces. Here, the wide range of intensity values exhibited by the water 

points aids our subclassification process. The two upward spikes on the intensity axis 

correspond to the ocean and the lake. 

Figure 58.  Water and Bathymetry Distinguished by Z, Intensity, and Height. 
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Alternately, the water and bathymetry subclasses can be selected by visualizing 

two-purely spatial attributes: Y (Band 2) and Z (Band 3) creates the pseudo-side view of 

the analysis area as seen in Figure 59. The two bodies of water occupy distinct and 

narrow ranges of Z values—the surface of calm water is essentially flat. This is also 

apparent in Figure 58. The bathymetry points appear in Figure 59 as a slope below the 

ocean level. Vegetation and buildings are temporarily unchecked in the “Class Controls” 

window, so that they are hidden to avoid confusion. 

Figure 59.  Water and Bathymetry Distinguished Spatially in N-D VIS in YZ 
Coordinates. 

 

We switch back to XYZ space (Bands 1, 2, 3) to view the land, water, and 

bathymetry interfaces before proceeding to subclassify the ground, vegetation, and 

building classes. Figure 60 presents five of our six classes in XYZ space. The 

unclassified 95% (white) remains hidden from view. The ability to turn classes on or off 

as needed is another extremely useful attribute of the N-D VIS tool. Again, dark blue is 

the water, cyan is the bathymetry, yellow is the buildings class, green is the vegetation 

class, and sienna is the ground class. Since we are working with only the 5% subset of 

points, Figure 60 appears less dense than the comparable Figure 56. 
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Figure 60.  NPS Campus in XYZ Space, Now with Water and 
Bathymetry Classes. 

 

2. Spectral Subclassification—Ground Points 

Next, ground points (sienna) are isolated in order to identify terrain categories in 

RGB space, also referred to as spectral space. Figure 61 shows the ground points only in 

XYZ space, approximately 341,300 points. Figure 62 is the corresponding spectral space. 

The data points are now represented in a format that resembles a 3D scatterplot. The 

visualizer can animate forward or backward through the various plot orientations, or one 

can use the “3D Drive Axis” option to manually maneuver the display. In Figure 61, the 

silhouettes of the Del Monte Lake and several campus buildings are labelled to provide a 

sense of orientation about the scene. 
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Figure 61.  Ground Points Only in XYZ Space, Prior to Subclassification. 

 

Figure 62.  Ground Points Only in RGB Space, Prior to Subclassification. 
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The spectral analysis proceeds systematically through the data in RGB space by 

visualizing the points from various perspectives. First, the extreme outliers are removed 

to ease access to the bulk of the points; they are intentionally absent from Figure 62. 

Next, points which appear to form clusters are selected and assigned to a new class 

(color). The screen is then switched back to XYZ space to inspect and correct the 

selection as necessary. This process is applied iteratively until all of the ground points 

have been reviewed and subclassified. Figure 63 displays the largest four of the newly 

defined ground subclasses. The most appropriate colors available in ENVI are assigned to 

the new subclasses. 

Figure 63.  Ground Subclasses in N-D VIS: Dirt, Grass, Concrete, and Asphalt. 

 

The grass/ivy (bright green) points have strong spectral returns in the red band 

(1064 nm). Thus, they occupy the highest values on axis 14. The sidewalk concrete 

(thistle—gray) is relatively bright and nearly even in the red, green (532 nm), and blue 

(1550 nm) bands. Comparatively, road asphalt (thistle 1) appears dark in all three bands. 
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The remaining sienna-colored points correspond to areas of dirt, sand, and mulch, which 

seem to be spectrally indistinguishable in the three available wavelengths. Additionally, 

two smaller ground subclasses are identified in Figure 64. The turf (fake grass) near the 

NPS flagpole (colored sea green) and the encompassing red-brick (red 3) traffic circle are 

the two smallest subclasses distinguishable in RGB space. In Figure 64, the grass/ivy 

subclass remains displayed as a reference, but it is necessary to hide the dirt, concrete, 

and asphalt subclasses to view the turf and brick spectral clusters. 

Figure 64.  Ground Subclasses in N-D VIS: Grass, Red Brick, and Turf. 

 

The ground class is now divided into six spectrally defined subclasses: dirt/sand/

mulch, grass/ivy, sidewalk concrete, road asphalt, red brick, and turf. Figure 65 is a 

spectral plot of these ground subclasses created using the average (mean) RGB values of 

each cluster. The x-axis is comprised of the three wavelengths: 532 nm, 1064 nm, and 

1550 nm. The y-axis is return intensity in arbitrary units; intensities are represented as a 

12-bit relative scale from 0 to 4096 (2 raised to the 12th power). None of the mean 

intensities for the ground subclasses exceed 2,500. From the 3-band spectral plot, the red 
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brick and the dark road asphalt are the two most similar spectra. Also, note the vast 

differences between grass and green turf, especially in the red (1064 nm) and blue (1550 

nm) bands. Concrete and road asphalt have similarly shaped profiles; however, the 

concrete is nearly twice as bright in all bands. This corresponds with the locations of the 

concrete and asphalt clusters in RGB space (Figure 63). 

Figure 65.  Spectral Plot of Ground Subclasses from Mean RGB Intensities. 

 
The AGL for all ground points is 0. 

Before proceeding to subclassify the vegetation and buildings, the newly defined 

ground types are reviewed altogether in XYZ space. The analysis is temporarily paused 

here to permit a ground truth walk-around of the NPS campus. This occurred in late 

October 2016, approximately five months after data collection. There was no noticeable 

change in any of the areas of concrete, asphalt, turf, or the red brick traffic circle. Due to 

a couple of recent rains and gardening, some of the real-world areas of grass appear 

larger and lusher than in the dataset. Thus, Google Earth imagery from April 2016 (about 
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one month before the LiDAR collect) is used as a backup means of ground-truth 

comparison for grass versus dirt areas. Refer to Figure 50. 

Figure 66 displays the six ground subclasses in XYZ space. Again, several 

landmark features and building silhouettes are labelled as a guide. Since N-D VIS only 

offers three shades of thistle (gray), the boundaries between sidewalk concrete and 

asphalt are difficult to discern in the image. During analysis, this is overcome by 

selecting only one class to view at a time by means of the control panel. Lastly, it is 

readily apparent that the grass on the softball fields and around the front of Herrmann 

Hall is the healthiest and densest on campus. 

Figure 66.  Ground Points Only in XYZ Space, Post-Spectral Subclassification. 
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3. Spectral Subclassification—Vegetation Points 

The primary intent of this thesis is to spectrally distinguish specific ground and 

building materials. Therefore, the vegetation class received the least amount of analysis. 

A brief look at the vegetation points in RGB space reveals two large clusters. The 

spectral cluster with the greater intensities in all bands roughly corresponds to shrubs, 

shorter cacti, and succulents. The other cluster, with lower RGB intensities, represents 

taller bushes and trees.  

Figure 67 displays the two newly defined vegetation subclasses in RGB space. 

Shrubs are colored using “green 2” and trees are the slightly darker “green 3.” Although 

grass technically belongs to the ground subclasses, it is included in Figure 67 to show that 

it has stronger returns in the red band (1064 nm) than the taller vegetation. The red lines 

are dividers among the three classes, not axes. 

Figure 67.  Vegetation Subclasses Compared to Grass in N-D VIS. 

 

We failed to discover any distinctive clusters corresponding to specific species of 

trees or shrubs. There does not appear to be enough information with only three spectral 

bands to distinguish between deciduous or evergreen plants, so separating vegetation at 
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the species level seems even less likely. For this reason, a spectra plot is not included for 

the vegetation subclasses, and the analysis moves forward to the last category: building 

materials and powerlines. 

Figure 68 highlights the two new vegetation subclasses alone in XYZ space. 

Trees are the darker green and generally appear denser than the shrubbery. The grass 

subclass is now hidden to prevent confusion, because the shades of green in N-D VIS are 

quite similar. Several noteworthy features are labelled, such as the NPS Arizona Cactus 

Garden and the hedges surrounding the flagpole in front of Herrmann Hall. 

Figure 68.  Vegetation Points Only in XYZ Space, 
Post-Spectral Subclassification. 

 
Mean AGL for shrubs is 16.5. Mean AGL for trees is 127.6. 
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4. Spectral Subclassification—Building Points 

Lastly, this analysis will apply the N-D VIS spectral-clustering technique to the 

campus buildings and powerlines. Figure 69 exhibits the starting point for buildings in 

XYZ space (left) and the corresponding RGB space (right). Several features are labelled 

in the XYZ image, including the powerlines that run along Del Monte Avenue just 

outside of the campus fence. Clusters of points are more apparent in the starting RGB 

image for buildings than they were for the ground and vegetation classes. This proved 

beneficial, because the subclassification process for buildings took approximately half the 

time as compared to the work on the ground points. Additionally, buildings are 

successfully subclassified into eight categories, as compared to the six for ground and 

two for vegetation. Building points that cannot be spectrally identified as a specific type 

of material are retained in the general building (yellow) subclass. 

Figure 69.  NPS Buildings in XYZ and RGB Space, 
Prior to Spectral Subclassification. 

 

The first building materials that we identify from Figure 69 are two types of 

concrete: light and dark. Light concrete (thistle 2) is the brightest material in all three 

spectral bands, and it appears to also include white-plaster surfaces. Dark concrete 
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(yellow 3—“gold”) has a similar RGB proportionality to light concrete, but it maintains 

lower intensities across the board. See Figure 71. 

Clay-tile roofing shingles (coral—color, not the organism) are approximately 

twice as bright in the red (1064 nm—NIR) and blue (1550 nm—SWIR) bands as they are 

in the green (532 nm—visible green). Accordingly, they are almost as readily identifiable 

as the light concrete. Once the clay shingles subclass is separated out, it is possible to 

distinguish another type of roofing material that is spectrally similar: red lava rocks and 

red basalt-felt shingles (orange 3). This cluster sits just below the clay shingles in RGB 

space, because it is slightly dimmer in all three bands. Red lava rocks and red basalt-felt 

composite shingles are incorporated into one class, since they are similar in both color 

and volcanic origin.  

Three final material clusters are identified with relatively low RGB intensities. 

These are “darker” than all of the aforementioned building subclasses. Tan/gray roofing 

shingles (maroon 2—”magenta”), dark asphalt shingles (purple 3), and powerlines 

(orchid—”light pink”) represent the least-sampled building subclasses in the dataset. 

Figure 70 provides two N-D VIS screenshots of the new building spectral 

subclasses in RGB space. In the right image, the dark concrete, clay shingles, and tan/

gray shingles subclasses have been disabled in order to expose the smaller clusters for 

dark asphalt shingles and red basalt/lava rock. Figure 71 is the corresponding spectral 

plot with the three wavelengths on the x-axis and return intensities on the y-axis. Y-axis 

values are the mean RGB intensities, in arbitrary units, for each subclass. The general 

building (yellow) subclass is included in the plot, but would be distracting in Figure 70. 
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Figure 70.  New Building Clusters in N-D VIS, Less the 
General Building Subclass. 

 

Figure 71.  Spectral Plot of Building Subclasses from Mean RGB 
Intensities and Average AGLs. 

 

Figure 72 presents the new building subclasses in XYZ space. The primary 

members of the new light concrete (thistle 2) subclass are King Hall, Glasgow East, 

Halligan Hall, most of Watkins Hall, some of the library roof, and the plastered walls of 

Herrmann Hall. Darker concrete (yellow 3) occupies the rooftops of Bullard Hall, 
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Spanagel Hall, main Glasgow Hall, and the flat section of the Naval Exchange (NEX). 

Clay-tile shingles (coral) top Herrmann Hall, the adjacent small houses, the peaked 

section of the gym roof, and the guard shacks at the two campus entrances.  

Red basalt/lava rock (orange 3) roof coverings are present on Ingersoll Hall, part 

of the library, the flat section of the gym, and the U.S. Post Office. Tan/gray shingles 

(maroon 2) can be found on a structure attached to the backside of Herrmann Hall near 

the loading dock and in a neighborhood to the east of campus. Dark asphalt shingles 

(purple 3) are present on one house (#283) near the library and Root Hall and in the same 

neighborhood to the east. 

Figure 72.  Building Points Only in XYZ Space, Post-Spectral Subclassification. 
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Ground truth involved accessing the upper balconies of Herrmann Hall and the 

rooftops of Spanagel and Ingersoll Halls with binoculars to determine the composition of 

the other rooftops not visible from the ground. Since the neighborhood to the east of 

campus is not within the primary area of concern, Google Earth is used to approximate 

the colors and types of roofing shingles. The points remaining in the general building 

(yellow) subclass appear to be mostly metal, wood, and concrete outliers that do not fall 

into the dark or light concrete subclasses. Metal surfaces, such as the rooftop over the 

NEX gas pumps, have a wide variance of intensity values and do not form distinct 

clusters in RGB space. This phenomenon is likewise exhibited on a grander scale by the 

water points, and it is why water requires subclassification using spatial attributes in 

addition to intensity (Figure 58). In Figure 73, the general building subclass is hidden 

from display. This allows for a better view of the primary material(s) on each roof. Also, 

Figure 73 exclusively shows the NPS campus. 
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Figure 73.  Roofing Materials of the NPS Campus. 

 

5. Summary of New Spectral Classifications 

By combining spatial and spectral attributes in N-D VIS, this analysis session 

produces 19 pertinent classes and one discarded class of extreme spectral outliers. The 19 

classes include the bulk 95% (unclassified points) and the new ground, vegetation, and 

building subclasses. These classes are exported from N-D VIS as regions of interest 

(ROIs) and are ready to be utilized as inputs for the ENVI classifiers described in Chapter 

V. Figure 74 is a screenshot of the newly classified 5% training subset in XYZ space. The 

shrubs subclass is included, but not labeled in the key. This is because the large extent of 

Figure 74 makes them difficult to discern from the similarly colored and more-important 

grass. Also, Figure 74 does not display the unclassified 95% or the extreme spectral 



 93 

outliers. Table 7 provides summary information to accompany Figure 74; it includes the 

unclassified points and the outlier class for a general comparison. 

Figure 74.  End of Spectral Analysis in N-D VIS—New Subclasses 
in XYZ Space. 
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Table 7.   List of Spectral Subclasses Generated 
Using the 5% Random Subset. 

Subclass Assigned Color Previous Class—Pre N-D VIS Number of Points 

Unclassified White All—Randomly Sampled  
as described in CH III 14,338,344 

Extreme Outliers Orange 1 All 4,603 
 
Water Blue Unclassified (1) 107,059 
Bathymetry Cyan Unclassified (1) 11,750 
 
Dirt, Mulch, & Sand* Sienna Ground (2) 196,044 
Grass & Ivy Green Ground (2) 26,204 
Sidewalk Concrete Thistle Ground (2) 31,872 
Road Asphalt Thistle 1 Ground (2) 72,356 
Red Brick Red 3 Ground (2) 298 
Turf Sea Green Ground (2) 122 
 
Shrubs Green 2 Vegetation (5) 5,995 
Trees Green 3 Vegetation (5) 190,083 
 
General Building Yellow Building (6) 7,025 
Light Concrete Thistle 2 Building (6) 6,835 
Dark Concrete Yellow 3 Building (6) 12,078 
Powerlines Orchid Unclassified (1) & Building (6) 615 
Clay Shingles Coral Building (6) 6,799 
Tan & Gray Shingles Maroon 2 Building (6) 1,313 
Dark Asphalt Shingles Purple 3 Building (6) 819 
Red Basalt & Lava Rock Orange 3 Building (6) 2,588 

*Note: After the completion of this chapter, we realized that sand could be separated in RGB space from 
the larger dirt, mulch, and sand subclass. The coastal sand of Monterey Beach forms a spectral cluster of 
14,179 points; this leaves the dirt and mulch subclass at 181,865 points. The sand subclass is not shown in 
Figure 74, however it will be incorporated into the classifiers and displayed in Chapter V. 
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V. CLASSIFICATION ANALYSIS AND RESULTS 

A. GENERAL PARAMETERS AND UNSUCCESSFUL CLASSIFIERS 

Before displaying the classification results, it is necessary to explain the 

methodologies and input parameters applicable to all of the ENVI classifiers 

demonstrated in this chapter. Additionally, we will briefly discuss the classifiers that fail 

to produce acceptable results. Section B continues with the somewhat-successful K-

means unsupervised classifier, and Section C describes the more-successful Maximum 

Likelihood (ML) supervised classifier. Lastly, Section D illustrates limited post-

processing (clean-up) applied to the ML results. 

First, we consider an important question: How do the results differ if a classifier is 

run on just a single flight line versus the four-combined flight lines of the entire NPS 

campus? To answer, we always run two concurrent instances of each classifier with 

identical input parameters—one instance classifies only a single flight line, and the other 

instance classifies the entire NPS campus. We choose flight line 10 for all single flight 

line instances, because it offers the longest north-south run down the center of the 

campus. Flight lines 12 and 13 are heavily cropped and exclude Herrmann Hall, and 

flight line 15 is essentially identical to 10. 

Second, we discover early in the classifier experiments that the wide range of 

intensity values exhibited by water points feeds excessive noise into the process. Water 

points are heavily misclassified as vegetation and, to a lesser extent, light building 

concrete. To circumvent this problem, we need an ENVI mask file that forces the 

classifiers to ignore the water and bathymetry points, both as ROIs (input classes) and as 

points to classify. So, we turn on the unclassified (white) class in N-D VIS and manually 

select all water and bathymetry points via the manner displayed in Figure 58. Then, we 

build a mask that will exclude the water (blue) and bathymetry (cyan) classes by 

choosing the “select areas off” option in the ENVI “Mask Builder” tool. These masked 

points will be exported as a combined, yet otherwise unaltered, class ignored by all of the 

upcoming classifiers. 
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Next, we experiment with various K-means and ML spectral input bands in 

addition to the height above ground (AGL) and Red-Green-Blue (RGB). GNDVI and the 

other vegetation indices do not contribute a noticeable improvement to the results of any 

classifier. Including the “number of returns” metric has no impact on K-means, but it 

does alter the ML output. For ML, the “number of returns” metric improves the results 

for some classes, primarily single-return-only classes (e.g., rooftop materials, turf, red 

brick, road asphalt, and sidewalk concrete). However, it significantly degrades the results 

for multi-return classes, such as shrubs and trees. ENVI classifiers are programmed to 

calculate statistics on continuous variables with expansive ranges (e.g., AGL [8-bit range] 

and RGB [12-bit range]), but number of returns is technically a discrete variable with a 

finite set of possible values: 1, 2, 3, or 4. Later, we will make use of the “number of 

returns” metric with Quick Terrain Modeler’s “Multivariate Filtering” tool, where we can 

selectively apply filtering by number of returns to only the classes that will benefit—as 

opposed to the classifiers which apply it indiscriminately. This is the post-processing 

technique discussed in Section D, the only post-processing that we perform on the data. 

Lastly, the Spectral Angle Mapper (SAM) and Spectral Information Divergence 

(SID) supervised classifiers produce extremely poor results. Like ML, SAM and SID 

generate an output class for all input classes from the 5% training subset, however there 

is no correlation: All of the SAM/SID output classes contain points randomly dispersed 

throughout the scene that in no way resemble the input classes. The SAM classifier 

defines classes according to n-dimensional spectral angles, and three wavelengths does 

not appear to be enough for SAM to function properly. The SID classifier works based on 

n-dimensional spectral divergence, similar to SAM’s spectral angles. SID is also hindered 

by only three input bands. Moreover, SAM and SID have no capacity to consider the 

AGL or any spatial attribute; they are strictly spectral (RGB only for this data) classifiers. 

The point clouds classified by SAM and SID are unsalvageable and receive no further 

attention.  
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B. K-MEANS UNSUPERVISED CLASSIFICATION 

Since K-means is an unsupervised classification technique, it disregards the 5% 

training subset. Instead, K-means classifies the data into its own algorithm-defined 

classes up to a user-specified maximum. This classifier begins by assuming that all class 

means within the data space are distributed evenly, then pixels are grouped into the class 

with the nearest mean via a minimum distance approach (Harris Geospatial Solutions 

2017a; Tou and Gonzalez 1974). This is an iterative process that recalculates class means 

and regroups pixels until the algorithm reaches the user-set maximum number of 

iterations or the overall change in pixel reclassification reaches a minimum limit (default 

setting is < 5%) (Harris Geospatial Solutions 2017a). 

We include K-means in this work primarily to show the limits of autonomous 

spectral classification—similar to how we described the limits of autonomous spatial-

only classification in Chapter III. Although there exists no quantitative method to 

compare the unsupervised results of K-means to the supervised results of ML, it is clear 

that ML is the better classifier for our spectral LiDAR dataset. This justifies the time and 

effort spent on the spectral training work in Chapter IV. Still, the K-means classifier 

performs better than expected for both a single flight line and the combined flight lines of 

the entire campus. The following represent our best K-means results, with these 

parameters: maximum class limit of nine (arbitrarily chosen as a balance between 

LASclassify’s four spatial and ML’s 15+ spectral output classes); input bands 11 (AGL), 

14 (Red), 15 (Green), and 16 (Blue); maximum number of iterations 20 (no improvement 

beyond this value); and the default change threshold percentage of < 5%. 

Table 8 is the point classification breakdown of K-means results for the single 

flight line and entire campus instances. It provides the class names and color-codes 

applicable to all upcoming K-means figures. The two instances of K-means produce the 

same 10 classes: the nine defined by K-means and the masked water/bathymetry class. 

However, the individual point classifications differ between the two K-means point 

clouds, especially at the flight line edges. 
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Table 8.   K-means Point Classification Breakdown and Approximate Percentages. 

K-means Class 
(Number and Color) 

Name* and Description Single Flight Line Entire Campus 

1—Dark Green 
Trees: canopy bottoms 
and other dark 
vegetation 

1,955,053 (33.3%) 4,975,598 (33.1%) 

2—Dark Green Trees: inner canopies 133,748 (2.3%) 312,953 (2.1%) 

3—Dark Gray Road Asphalt 561,741 (9.6%) 1,478,834 (9.8%) 

4—Light Gray Semi-dark Concrete and 
concrete/asphalt mix 

530,138 (9%) 1,368,249 (9.1%) 

5—Middle Green Shrubs and many tree 
tops 

397,829 (6.7%) 1,035,129 (6.9%) 

6—Gold/Gray Darker Concrete: 
building and ground 

216,092 (3.7%) 495,133 (3.3%) 

7—Brown Dirt, Mulch, Sand, Clay 655,211 (11.2%) 1,754,284 (11.7%) 

8—Bright Green Grass and ivy 442,472 (7.5%) 1,084,551 (7.2%) 

9—Off White Light Concrete 26,916 (0.45%) 78,452 (0.5%) 

0—Blue Water and Bathymetry 
(masked points) 

950,638 (16%) 2,439,619 (16.2%) 

Total Point Count  5,869,838 15,022,802 

* Capitalized words in the name and description column are the assigned class names. 

1. K-means Single Flight Line—Central Campus 

Figure 75 is a wide-area screenshot of the K-means classifier results for the single 

flight line instance. It shows all of the classes in Table 8 other than the water/bathymetry 

class. Again, Figure 75 is the central campus (FL 10 only). Several areas are labelled to 

provide a sense of orientation. 
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Figure 75.  K-means Single Flight Line—All Classes but Water. 

 

From Figure 75, it is obvious that K-means demonstrates more weaknesses than 

strengths when classifying spectral LiDAR data. Remember, this unsupervised classifier 

does not use the 5% training classes from N-D VIS. Figure 76 shows the individual K-

means classes that we loosely place into the strengths category for the single flight line 

point cloud. Quick Terrain Modeler’s “QTA Discrete Attribute Analysis” tool allows one 

to view or hide points by classification, AGL, or any other individual attribute from 

Table 6. 
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Figure 76.  K-means Single Flight Line Strengths. 

 

The correct classification of ground points along the flight line edge represents the 

primary benefit of running the K-means classifier on a single flight line vice combined 

flight lines. The majority of the NPS Quad in Figure 76 is correctly classified into the 

dirt, mulch, sand, and clay class. Additionally, K-means does a decent job distinguishing 

the interfaces among the road asphalt, grass, and dirt/mulch/sand/clay classes: notice the 

sharp definition of the roads around Herrmann Hall and the Arizona Cactus Garden’s 

clear borders between dirt/sand and grass. Lastly, the light building concrete class is 

defined well by the K-means classifier, especially on the rooftop of King Hall. This is not 

considered the primary strength for single flight line K-means, because the combined 

flight line K-means and the ML classifiers also define the light building concrete class 

with exceptional distinction. 

Nevertheless, the K-means classification process generates serious problems, as 

seen in Figures 77 and 78. In Figure 77, the turf around the NPS flagpole and the adjacent 

asphalt parking lot are misclassified as trees. Turf and areas of darker asphalt have low 
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spectral intensities for all three wavelengths, similar to tall and dense vegetation which 

also experiences weak signal returns. In contrast, tree tops are often misclassified as 

shrubs due to the brighter returns from that part of the canopy. Next, the rooftops with 

clay-tile shingles (e.g., Herrmann Hall) demonstrate gross misclassifications. Despite 

having AGL as an input metric, the K-means classifier cannot separate dirt, mulch, sand, 

and clay on the ground from the clay shingles at much greater heights. Also, a substantial 

amount of points on the clay-tile roofs are misclassified as semi-dark concrete and some 

are even included in the tree classes. Furthermore, K-means sometimes has difficulty 

distinguishing between sand and concrete, especially for large areas of sand (e.g., 

Monterey Beach—not shown). 

Figure 77.  K-means Single Flight Line Weaknesses. 

 

Figure 78 shows another K-means AGL-related discrepancy, similar to the 

aforementioned problem of ground dirt, mulch, sand, and clay versus the clay-tile 

shingles. The darker concrete (gold) points on the rooftop of Root Hall are grouped into 

the same class as some of the adjacent ground concrete. In Figure 78, the trees (classes 1 
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and 2) and shrubs (class 7) are hidden, creating the apparent black holes in the image. 

Also, the entire rooftop of Ingersoll Hall is classified as road asphalt, however it is 

mainly comprised of red lava rocks—a material class unidentified by K-means. 

Figure 78.  K-means Single Flight Line Weaknesses Continued. 

 

2. K-means Combined Flight Lines—Entire Campus 

Running the K-means classifier on the entire NPS point cloud (four-combined 

flight lines) generates no significant improvements over the single flight line instance. 

There is slightly less confusion between sand and concrete in the combined point cloud. 

Moreover, the combined flight lines K-means demonstrates all of the serious weaknesses 

of the single flight line instance, plus an additional issue in the areas of flight line 

overlap. The NPS Quad in Figure 79 is comprised of points from three flight lines (10, 

12, and 15), in contrast to the single flight line portion of the Quad in Figure 76. Due to 

variations in aircraft altitude, speed, and other factors during the flight campaign, the 

points of different flight lines have a slight vertical offset (3-5 cm). This becomes a 

problem in the areas where two or more flight lines overlap. K-means interprets many of 

these offset points as grass, as seen in the majority of the Quad in Figure 79. 
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Figure 79.  K-means Combined Flight Lines—Additional Weakness. 

 

Overall, K-means performs better than initially expected. Yet, it is insufficient for 

both single flight line and combined flight line classification. Even with the AGL metric, 

the K-means classifier fails to separate similar ground and building materials: clay-tile vs. 

dirt, sand vs. concrete, and sidewalk vs. building concretes. The autonomous K-means 

classifier also struggles with spectrally dark materials, including trees, turf, and asphalt. 

Now, we will demonstrate how the spectral classification process is improved by a 

supervised classifier that operates based on input classes from the 5% training subset. 

C. MAXIMUM LIKELIHOOD SUPERVISED CLASSIFICATION 

ML is the best classification method for extrapolating the N-D VIS spectral 

processing approach, demonstrated in Chapter IV, to the remaining unclassified points. 

First, the ML classifier creates a unique rule image for each of the selected input classes. 

Every pixel (laser data point) is represented in each rule image and assigned class-

probability values based on normally distributed class statistics (Harris Geospatial 

Solutions 2017b). The ML algorithm then builds one classification image from the 
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separate rule images. In the classification image, every laser data point is assigned a 

classification that corresponds to the rule image with the highest probability value for that 

point (2017). Afterward, the rule images are discarded unless the user chooses to save 

them. According to Harris, ENVI applies the discriminate ML formula described in 

Figure 80 (Harris Geospatial Solutions 2017b). 

Figure 80.  ML Probability Equation. Adapted from Richards (2013, 251). 

 

Figure 81 is the probability graph for the concrete-class rule image. It somewhat 

resembles a fat-tailed log-normal distribution, albeit with heavy skew. ENVI applies a 

logarithmic scale to the probabilities on the x-axis. The probability of a point being 

concrete is zero on the right edge of the graph and increases toward one moving to the 

left. The green and red lines in Figure 81 correspond to the colored areas in Figure 82. 

This shows the points most likely to be classified as concrete when the classification 

image is constructed from the rule images. The points that remain colored white in Figure 

82 are less likely to be classified as concrete. 
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Figure 81.  ML Probability Graph for Concrete-Class Rule Image. 

 

Figure 82.  ML Points Colored According to Rule Graph for Concrete Class. 
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The ML probability threshold is an input parameter that can be set either 

universally for all classes or individually for each. While it does not factor into the ML 

equation, the probability threshold will prevent a point from being classified into the 

most-likely class if that point does not meet the minimum probability requirement. For 

example, an arbitrary point has the following rule image probabilities: 0.1 for trees, 0.2 

for asphalt, 0.5 for grass, and 0.1 for turf. Normally, this point will get classified as grass 

in the classification image. However, if the probability threshold for the grass class is set 

to 0.75, then this point does not meet the threshold and remains unclassified—it is not 

reviewed again for inclusion into any other class, even the next most likely. 

We experiment with different probability thresholds to see if this factor can 

improve the results. We expect that selecting “no probability threshold” across-the-board 

will result in a point cloud with many errors of commission (e.g., numerous points will be 

classified as, say, concrete that are not actually concrete). Indeed, this is true. So, will 

making the classifier more discriminate, by increasing the probability thresholds, result in 

fewer errors of commission and more distinctly defined classes? The answer: yes, there 

will be fewer errors of commission, however the cost is an increase in errors of omission 

(e.g., some of the points that truly are concrete will remain unclassified). Figure 83 is a 

comparison of ML results for the clay-tile shingles class at no probability threshold (left) 

and 50% probability threshold (right). 

Figure 83.  Clay-tile Shingles Class Probability Thresholds—Errors of 
Commission vs. Omission. 
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Table 9 is the point classification breakdown for the four runs of the ML 

classifier: zero and 0.5 probability thresholds for both a single flight line (FL 10) and the 

four-combined flight lines of the entire campus. Approximate percentages are provided 

for a comparison. A 0.5 probability threshold results in 34% of the point cloud remaining 

unclassified—millions of points! Instead of attempting to find a threshold balance 

between zero and 0.5, we proceed with no probability threshold and apply the post-

processing technique in Section D. Post-processing by multivariate filtering offers the 

advantage of removing errors of commission without introducing errors of omission, 

unlike what happens by simply increasing the probability threshold of the ML classifier. 

Table 9.   ML Point Breakdown by Class and Probability Threshold. 
 ML Single Flight Line ML Combined Flight Lines 

Class No Threshold 50% Threshold No Threshold 50% Threshold 

0—Unclassified — 1,966,674 (34%) — 5,095,287 (34%) 
1—Grass 347,778 (6%) 204,170 (3.4%) 881,438 (5.9%) 491,714 (3.3%) 

2—Turf 70,032 (1.2%)  22,359 (0.4%) 177,813 (1.2%) 57,020 (0.38%) 

3—Clay-tile Shingles 104,500 (1.8%) 31,788 (0.5%) 254,587 (1.7%) 72,451 (0.48%) 

4—Dirt and Mulch 999,086 (17%) 734,721 (12.4%) 2,594,605 
(17.3%) 

1,880,332 
(12.5%) 

5—Sidewalk Concrete 160,455 (2.7%) 95,650 (1.6%) 438,732 (2.9%) 255,037 (1.7%) 
6—Red Brick 247,467 (4.2%) 138,904 (2.4%) 620,056 (4.1%) 347,399 (2.3%) 

7—Shrubs 488,686 (8.3%) 278,069 (4.6%) 1,258,132 (8%) 737,906 (4.9%) 

8—Trees 1,263,462 
(21.5%) 

756,061 
(12.9%) 

3,178,190 
(21.2%) 

1,900,236  
(12.6%) 

9—Dark Bldg Concrete 132,314 (2.3%) 70,869 (1.1%) 332,166 (2.2%) 165,446 (1.1%) 
10—Tan/Gray Shingles 42,053 (0.7%) 6,042 (0.1%) 104,734 (0.7%) 17,830 (0.1%) 
11—Asphalt Shingles 81,462 (1.4%) 9,570 (0.2%) 191,858 (1.3%) 17,209 (0.1%) 
12—Red Basalt/Lava 
Rock 60,666 (1%) 16,725 (0.3%) 161,088 (1%) 49,104 (0.3%) 

13—Sand 208,664 (3.6%) 138,864 (2.4%) 544,199 (3.6%) 353,910 (2.4%) 

14—Road Asphalt 640,412 (11%) 404,635 (6.9%) 1,622,459 
(10.7%) 1,026,055 (6.8%) 

15—Light Bldg 
Concrete 72,163 (1.2%) 44,099 (0.8%) 223,126 (1.5%) 116,247 (0.8%) 

16—Water/Bathy 950,638 (16%) 950,638 (16%) 2,439,619 
(16.2%) 

2,439,619 
(16.2%) 

Total Point Count 5,869,838 15,022,802 
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1. ML Single Flight Line—Central Campus 

After a few practice runs of the ML classifier, it became apparent that some of the 

training classes in Table 7 must be excluded from the process. The general building class 

is too spectrally diverse; it causes an excessive misclassification of vegetation points as 

general building. Powerlines have extremely low intensities in all three wavelengths (see 

Figure 71). Consequently, there is excessive confusion between true powerlines and the 

similarly dark inner tree canopies. Henceforth, the pertinent ML input/output classes are 

grass (1), turf (2), clay-tile shingles (3), dirt and mulch (4), sidewalk concrete (5), red 

brick (6), shrubs (7), trees (8), dark building concrete (9), tan/gray shingles (10), asphalt 

shingles (11), red basalt/lava rock (12), sand (13), road asphalt (14), and light building 

concrete (15). Again, water and bathymetry points (16) are carried over to the classified 

point cloud via masking. The following bands are selected as input metrics for the ML 

classifier: AGL (Band 11), Red (Band 14), Green (Band 15), and Blue (Band 16). 

Classification results are not noticeably improved by including the vegetation indices: 

GNDVI (Band 18), GDVI (Band 19), and GRVI (Band 20).  

Figure 84 shows the results of the ML classifier for a region near Herrmann Hall. 

This is the single flight line instance (FL 10), and the figure key includes only the classes 

that exist in the chosen area. The advantages of ML over K-means are readily apparent: 

The majority of rooftop points on Herrmann Hall are correctly classified as clay-tile 

shingles, not as dirt/mulch or concrete. There exists minor confusion between clay-tile 

shingles and trees—some points on the clay-tiled roof are misclassified as trees, and 

some points in the nearby tree canopies are misclassified as clay-tile shingles. 

Similar to K-means, ML does well in distinguishing the interfaces among dirt/m

ulch, sidewalk concrete and road asphalt, grass, red brick, and turf. Nevertheless, the red 

brick and turf classes demonstrate minor confusion. In Figure 84, small sections of the 

asphalt parking lot in front of Herrmann Hall are misclassified as turf. Additionally, it 

appears that some sections of sidewalk concrete and the majority of road paint (white-, 

red-, and yellow-painted lines) are confused with red brick. We were unable to separate 

road paints from the road asphalt in N-D VIS (Chapter IV). While it is reasonable to 

assume that road paint is spectrally closer to red brick than to dark asphalt, the process is 
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complicated by the narrow margin of spectral separation between these two classes 

(Refer to red brick and asphalt in the ground materials spectral plot—Figure 65). 

Therefore, we attribute this problem to the analysist’s inability to distinguish a road paint 

training class, rather than to the ML classifier. Lastly, many of the parked cars (also 

undefined in the training subset) are misclassified as shrubs—the reason is unknown, but 

cars are within the same AGL range as shrubs (0-17), far below the mean AGL of trees 

(127). 

Figure 84.  Screenshot of Single Flight Line ML Results Near Herrmann Hall. 

 

2. ML Combined Flight Lines—Entire Campus 

The input classes and spectral bands (AGL and RGB) for the combined flight 

lines instance of ML are identical to those of the single flight line instance. The strengths 

and weaknesses described previously for the single flight line point cloud are reproduced 

in the combined flight lines point cloud. Unlike K-means, ML does not breakdown in the 
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areas of flight line overlap. Notice the Quad in Figure 85; the ground points are correctly 

classified as dirt/mulch, not as the grass seen in Figure 79. ML keeps the points classified 

as trees in a single class, as opposed to the three K-means classes that contain various 

parts of the canopies (see Table 8). Still, some should-be tree points are misclassified as 

clay-tile shingles or red basalt/lava rock. Also, the beach sand directly touching the ocean 

is often misclassified as red brick or asphalt—wet sand is spectrally darker than dry sand. 

Similarly, the concrete of Spanagel Hall is darker in color than many of the other 

buildings, exhibiting a higher degree of misclassification as trees. 

Figure 85.  Raw ML Results for the Entire NPS Campus— 
Four Combined Flight Lines. 
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Overall, the ML classifier performs significantly better than the K-means 

classifier. ML successfully uses the AGL metric to distinguish between ground and 

roofing concretes and between dirt/mulch and clay-tile shingles. By comparison, the K-

means classifier seems to ignore the AGL input metric, frequently mixing similar-

composition ground and building points into the same output classes. Section D will 

apply post-processing to the point cloud in Figure 85; compare this figure to the refined 

Figure 91. Look specifically at the trees, the roofs of Herrmann and Spanagel Halls, the 

library, and the NEX. 

Table 10 is the confusion matrix for the entire campus point cloud, classified by 

ML with no probability threshold. It compares the points in the 5% training subset before 

and after classification. Each class’ greatest misclassification (confusion) is in red text. 

The bold-type along the diagonal highlights individual class accuracies—i.e., points 

mapped from a particular training class in Table 7 to the correct ML output class in Table 

9. Bold-type class names have an accuracy of 70% or better. 

Table 11 provides a quick summary for the confusion matrix in Table 10. Again, 

these results are only for the ML combined flight lines instance with no probability 

threshold. Classes are listed by descending order of accuracy in Table 11. Potential 

reasons are given for each class’ most frequent misclassification(s). Overall classification 

accuracy is 75%, with 10 of the 14 classes demonstrating individual accuracies above 

70%. The grass and turf classes outperform the others with accuracies of 99.9% and 95%, 

respectively. The worst performer is sidewalk concrete at 46% due to a high degree of 

confusion with similar ground types: sand, older faded asphalt roads, and roads paved 

with a lighter-color asphalt/concrete mixture (i.e., not fresh or dark black asphalt). Lastly, 

approximately half of the classes fall into the range of moderate success: 75–89%. 
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Table 10.   Confusion Matrix—Raw ML Results vs. the 5% Training Subset. 
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Grass  
(26,204) 

26,181 
(99.9%) 0 0 23 0 0 0 0 0 0 0 0 0 0 0 

Turf 
(122) 1 116 

(95%) 0 0 0 1 0 0 0 0 0 0 0 4 0 

Clay-tile 
Shingles 
(6,799) 

3 0 5,202 
(77%) 346 1 13 282 48 36 130 0 734 0 2 2 

Dirt/Mulch 
(181,865) 16,293 4,262 0 120,466 

(66%) 4,417 17,258 0 0 1 0 0 0 6,504 12,664 0 

Sidewalk 
Concrete 
(31,872) 

56 14 0 1,443 14,657 
(46%) 3,770 0 0 0 0 0 0 7,300 4,632 0 

Red Brick 
(298) 2 0 0 1 9 204 

(68%) 0 0 0 0 0 0 0 82 0 

Shrubs 
(5,995) 18 3 106 36 0 28 5,108 

(85%) 301 50 58 178 94 0 7 8 

Trees 
(190,083) 0 0 2,902 1 0 0 21,551 151,666 

(80%) 1,283 1,729 6,978 3,950 0 0 23 

Dark Bldg 
Concrete 
(12,078) 

2 6 212 347 248 841 177 25 7,521 
(62%) 453 10 27 56 150 2,003 

Tan/gray Shingles 
(1,313) 0 0 9 0 0 0 15 0 8 1,098 

(84%) 181 2 0 0 0 

Asphalt 
Shingles 
(819) 

0 0 0 0 0 0 16 3 1 32 767 
(94%) 0 0 0 0 

Red Basalt 
Lava Rock 
(2,588) 

0 0 114 470 0 3 29 15 0 22 0 1,935 
(75%) 0 0 0 

Sand 
(14,179) 0 0 0 228 496 716 0 0 0 0 0 0 12,441 

(88%) 298 0 

Road Asphalt 
(72,356) 0 4,066 0 526 915 5,844 0 0 0 0 0 0 130 60,875 

(84%) 0 

Light Bldg 
Concrete 
(6,835) 

2 0 1 5 37 0 0 0 724 0 0 0 0 0 6,066 
(89%) 

Total Accuracy 414,303 of 553,406 
points 75%  
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Table 11.   Accuracy Summary for Raw ML Confusion Matrix. 

Class Name (#) Accuracy 
(%) 

Primary 
Misclassification Suspected Reasons for Confusion 

Grass (1) 99.9 Dirt/Mulch 
These two classes naturally exist in 
extremely close proximity. (Possibly 
some subpixel mixing). 

Turf (2) 95 Road Asphalt Dark in all spectral bands; both are 
ground materials (AGL = 0). 

Asphalt  
Shingles (11) 94 Tan/gray Shingles Gray and black asphalt shingles are often 

interspersed on the same roof. 

Light Building 
Concrete (15) 89 Dark Building 

Concrete 

There are several middle shades of 
concrete on various roofs that are not 
separated in N-D VIS. 

Sand (13) 88 Red Brick, 
Sidewalk Concrete 

There are many areas with a thin layer of 
sand over a concrete path (especially near 
the beach). Some areas of wet sand are 
spectrally darker, resembling red brick. 

Shrubs (7) 85 Trees 
There is greater confusion for vegetation 
points around the cutoff AGL between 
shrubs and trees. (AGL = ~16). 

Road 
Asphalt (14) 84 Red Brick, Turf 

All are spectrally dark. Road paint left 
unseparated from the asphalt in N-D 
VIS—gets placed into red brick class. 

Tan/Gray 
Shingles (10) 84 Asphalt Shingles Same reason as asphalt shingles (above). 

Trees (8) 80 Shrubs, Asphalt 
Shingles 

Spectrally dark and many tree points are 
at similar AGLs to the asphalt rooftops. 

Clay-tile 
Shingles (3) 77 Red Basalt/Lava 

Rock 
Similar in color; no visible-red laser to 
help distinguish. 

Red Basalt 
Lava Rock (12) 75 Dirt/Mulch, Clay-

tile Shingles 

Same as previous reason for confusion 
with clay shingles. Confusion with dirt/m
ulch is due to a sub-area of corrupt AGLs 
(described later). 

Red Brick (6) 68 Road Asphalt 
No visible-red laser; both are spectrally 
dark. Almost all the road paint within the 
asphalt class is classified as red brick. 

Dirt/Mulch (4) 66 
All other ground 
classes, especially 
Red Brick 

Large and disperse class in N-D VIS 

Dark Building 
Concrete (9) 62 Light Building 

Concrete, Red Brick 

Middle shades of concrete are not 
distinguishable in N-D VIS, getting 
lumped into the dark concrete class. 
Unsure on the confusion with red brick. 

Sidewalk 
Concrete (5) 46 Sand, Road Asphalt 

Concrete is made from sand, and all three 
classes have AGL = 0 for all points. 
Many of the campus roads are more of a 
lighter concrete/asphalt mixture. 



 116 

D. POST-PROCESSING: REFINEMENT BY MULTIVARIATE FILTERING 

Quick Terrain Modeler’s “Multivariate Filtering” tool applies simple logical 

operators to filter points. An example is illustrated in Figure 86 for the sidewalk concrete 

class, filtered by number of returns. Most areas of true sidewalk concrete have only one 

return, whereas the majority of sidewalk concrete points with more than one return are 

actually dirt or sand under vegetation (red points in Figure 86). Of course, this method 

will incorrectly filter some true-class points, however the tradeoff is a substantial 

improvement over the raw ML results without the introduction of a significant amount of 

errors of omission. In Figure 86, the 23,250 filtered points are colored red, but this tool 

also allows the user to hide, cut, or reclassify the selected points. 

Figure 86.  Illustration of the Multivariate Filtering Process for 
Sidewalk Concrete. 
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We can apply multivariate filtering for individual attributes or any combination of 

attributes from Table 6. For this effort, we post-process only the ML entire campus point 

cloud, limited to the single most-beneficial filtering attribute: number of returns (#6). The 

grass class is not post-processed due to its raw classification accuracy of 99.9%. For the 

other 14 (non-water) classes, number-of-returns filtering is applied in a logical manner 

that errs on the side of caution: under correction is preferred to over correction. E.g., this 

method can decrease the confusion between single-return building materials and multi-

return vegetation classes, however it cannot be used to correct the confusion between 

shrubs and trees (both multi-return classes) or between asphalt shingles and dark building 

concrete (both single-return classes).  

1. Select Before-and-After Figures 

The upcoming figures compare the ML results before and after post-processing 

for two ground classes and all six building classes. Figures 87 and 88 respectively 

represent the before and after for turf (2) and road asphalt (14). Figures 89 and 90 are the 

before and after for clay-tile shingles (3), dark building concrete (9), tan/gray shingles 

(10), asphalt shingles (11), red basalt/lava rock (12), and light building concrete (15). 

Figure 87.  Turf and Road Asphalt Before Filtering by Number of Returns. 
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Figure 88.  Turf and Road Asphalt After Filtering by Number of Returns. 

 

Figure 89.  Building Materials Before Filtering by Number of Returns. 
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Figure 90.  Building Materials After Filtering by Number of Returns. 

 

2. NPS Campus Refined by Number of Returns 

In both before-and-after examples, filtering by number of returns greatly 

improves class definition by removing the majority of errors of commission without 

introducing too many errors of omission. Figure 91 is the refined entire campus point 

cloud. A significant change can be seen in the trees and on the building rooftops. During 

the multivariate filtering process, two major rooftop misclassifications are discovered and 

corrected: On the NEX, many of the clay-tile shingles and some areas of the flat concrete 

roof are misclassified as dirt/mulch. Likewise, the red lava rock section of the library roof 

is misclassified as dirt/mulch. It appears that these areas incorrectly received an AGL 

value of zero during the LASheight script. Accordingly, ML classifies them into the 
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most-appropriate ground class (dirt/mulch)—we manually correct only these specific 

errors (and absolutely no others), since the fault is not attributable to the classifier. 

Figure 91.  Post-Processed ML Point Cloud—Entire NPS Campus 
(Four Combined Flight Lines). 

 

Table 12 is the confusion matrix for the post-processed results compared to the 

original 5% training subset. The gray-shade cells indicate changes from the raw ML 

confusion matrix in Table 10. A red-text entry represents each class’ greatest 

misclassification after refinement. Additionally, a summary chart for the post-processing 

confusion matrix is provided in Table 13, listing each class’ individual improvement and 

the overall improvement. 
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Table 12.   Confusion Matrix—ML Post-Processed by Number of Returns vs. the 5% Training Subset. 
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Grass  
(26,204) 

26,181 
(99.9%) 0 0 23 0 0 0 0 0 0 0 0 0 0 0 

Turf 
(122) 1 116 

(95%) 0 0 0 1 0 0 0 0 0 0 0 4 0 

Clay-tile 
Shingles 
(6,799) 

3 0 5,839 
(86%) 3 1 11 24 14 36 130 0 734 0 2 2 

Dirt/Mulch 
(181,865) 16,293 615 0 146,132 

(80%) 3,784 5,786 0 0 1 0 0 0 6,504 2,750 0 

Sidewalk 
Concrete 
(31,872) 

56 7 0 1,450 14,806 
(46%) 3,621 0 0 0 0 0 0 7,300 4,632 0 

Red Brick 
(298) 2 0 0 1 9 204 

(68%) 0 0 0 0 0 0 0 82 0 

Shrubs 
(5,995) 18 1 99 24 0 10 5,390 

(90%) 301 36 18 2 85 0 3 8 

Trees 
(190,083) 0 0 2,229 1 0 0 21,551 164,405 

(86%) 102 208 82 1,487 0 0 18 

Dark Bldg 
Concrete 
(12,078) 

2 4 212 286 244 810 66 21 7,934 
(66%) 453 10 27 0 6 2,003 

Tan/gray Shingles 
(1,313) 0 0 9 0 0 0 3 0 8 1,110 

(85%) 181 2 0 0 0 

Asphalt 
Shingles 
(819) 

0 0 0 0 0 0 11 1 1 32 774 
(95%) 0 0 0 0 

Red Basalt 
Lava Rock 
(2,588) 

0 0 114 3 0 2 9 2 0 22 0 2,436 
(94%) 0 0 0 

Sand 
(14,179) 0 0 0 228 496 0 0 0 0 0 0 0 13,455 

(95%) 0 0 

Road Asphalt 
(72,356) 0 3,719 0 873 915 5,844 0 0 0 0 0 0 130 60,875 

(84%) 0 

Light Bldg 
Concrete 
(6,835) 

2 0 1 5 37 0 0 0 724 0 0 0 0 0 6,066 
(89%) 

Total Accuracy 455,723 of 553,406 
points 82%  



 122 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 123 

Table 13.   Accuracy Summary for Post-Processing ML Confusion Matrix. 

Class Name (#) Raw ML Accuracy (%) 
from Table 11 

Accuracy After Post-
Processing (%) 

Rate of 
Improvement (%) 

Grass (1) 99.9 N/A N/A 
Turf (2) 95 95 - 
Asphalt  
Shingles (11) 94 95 +1 

Light Building 
Concrete (15) 89 89 - 

Sand (13) 88 95 +7 
Shrubs (7) 85 90 +5 
Road 
Asphalt (14) 84 84 - 

Tan/Gray 
Shingles (10) 84 85 +1 

Trees (8) 80 86 +6 
Clay-tile 
Shingles (3) 77 86 +9 

Red Basalt 
Lava Rock 
(12) 

75 94 +19 

Red Brick (6) 68 68 - 
Dirt/Mulch (4) 66 80 +14 
Dark Building 
Concrete (9) 62 66 +4 

Sidewalk 
Concrete (5) 46 46 - 

Overall 75 82 +7 

Considerable individual class improvements are in bold type. 

Post-processing by number of returns increases overall classification accuracy to 

82%. The dirt/mulch and red basalt/lava rock classes demonstrate the greatest progress of 

+14% and +19%, respectively. Areas of dirt and mulch now exhibit better distinction 

from turf and the impervious surfaces, primarily road asphalt and red brick. The 

improvement in the red basalt/lava rock class is mostly attributable to the aforementioned 

correction of the library roof—misclassified as dirt/mulch due to false AGL values. Had 

this error not occurred, we would expect red basalt/lava rocks to demonstrate 

approximately 90% or better classification accuracy. Some confusion persists among 
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clay-tile and red basalt/lava rock roofs, which is uncorrectable without analyzing other 

attributes besides number of returns (or outright manual correction). 

Figure 92 is the area near Herrmann Hall previously displayed in Figure 84, but 

now post-processed by number of returns. Notice the sharper class definitions, especially 

on the rooftop; there remains no noticeable confusion among the building materials and 

vegetation classes. The misclassifications of road paint as red brick, asphalt as turf, and 

cars as shrubs remain the three apparent discrepancies in the scene, however these are 

considered minor—and uncorrectable without additional post-processing. Figure 92, 

refined spectral LiDAR classification, should also be compared to Figure 49, the best of 

spatial-only (traditional) classification plus manual correction. The increased accuracy 

and diversity in terrain, building, and vegetation classification due to the spectral 

component is evident: 82% (minimally refined spectral accuracy) vs. 77.36% (heavily 

refined spatial accuracy—from Table 4) and 16 classes vs. four. 

Figure 92.  Post-Processed ML Results Near Herrmann Hall. 
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After multivariate filtering, the tree and shrub classes are unconfused with the 

building materials, as seen in Figures 91 and 92. Less noticeable is the 7% improvement 

for sand, primarily from the de-confliction of wet beach sand with asphalt and red brick. 

Eight of the 14 classes maintain essentially the same self-mapping accuracies: grass (not 

post-processed), turf, asphalt shingles, light building concrete, road asphalt, tan/gray 

shingles, red brick, and sidewalk concrete (still the worst at 46%). For these classes, any 

improvement in class distinction comes primarily from the de-confliction of true-class 

points with the dirt/mulch and vegetation classes, as exemplified in the before-and-after 

figures for turf and road asphalt (Figures 87 and 88). Altogether, post-processing by 

number of returns makes a worthwhile contribution to the spectral LiDAR terrain 

classification process. Additional filtering attributes that may further refine the results are 

the vegetation indices (GNDVI, GDVI, and GRVI), AGL, and possibly RGB. We leave 

this as future work for the next analyst. 
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VI. CONCLUSION 

A. APPLICABILITY TO SPACE AND MILITARY OPERATIONS 

LiDAR technologies continue to climb increasingly upward in operational 

altitude. Eventually, a narrow-beam multi-wavelength LiDAR system will become an 

important remote-sensing satellite payload. The analysis techniques applied herein 

represent a demonstration-of-concept that multi-wavelength LiDAR systems improve 

upon terrain classification by adding a spectral component. Furthermore, ENVI’s n-

Dimension Visualizer has successfully exhibited the capacity to adapt to LiDAR data. 

This powerful tool can, in theory, support spectral LiDAR data of up to “n” wavelengths 

(i.e., a hyperspectral LiDAR—currently an infant laboratory technology). With a greater 

number of available dimensions (wavelengths), class clusters will become even more 

recognizable and easier to distinguish in spectral space. 

As demonstrated, spectral LiDAR imaging allows us to analyze 3D spatial and 

spectral attributes simultaneously. This may provide significant advantages for 

identifying adversarial deception tactics, such as camouflage. By analyzing both the 

spatial dimensions and the spectral returns of a scene, camouflage is more likely to 

become distinguishable from real vegetation. Analysis techniques for multispectral and 

hyperspectral electro-optical (EO) imagery also possess the capacity to separate fake 

from actual vegetation, however LiDAR is an active remote-sensing method that can be 

employed at night. Moreover, it offers high-resolution 3D data products that compliment 

traditional, lower-resolution and 2D, multi- and hyperspectral imagery. 

In the military space domain, technological innovation, evolution, and 

adaptability permit us to remain ahead of our advancing adversaries. Considerable effort 

should remain devoted to the evolution of spectral LiDAR systems and the maturation of 

accompanying data-analysis techniques. This technology may prove tremendously 

beneficial if it becomes available from space over areas denied even to airborne 

intelligence, surveillance, and reconnaissance (ISR) platforms. 
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B. FUTURE WORK IN SPECTRAL LIDAR 

One potential avenue of future work is to analyze the spectral RGB attributes in 

Cloud Compare as XYZ to identify class clusters. Once the flight line LAS files are 

converted into ASCII files via the nearest neighbor script, the RGB attributes can be 

imported into Cloud Compare software as x, y, and z values. This creates a 3D scatterplot 

similar to viewing the RGB in N-D VIS. Spectral class clusters are selected and exported 

as new data classifications. A future effort can conduct the spectral analysis using Cloud 

Compare and then compare the output to the results from N-D VIS for the same scene. 

Additionally, an effort should be made to consolidate the data preparations 

process, discussed in Chapter III, into a single script. This script can streamline the 

process by taking in the full-flight line LAS files (as-received from NCALM) and 

outputting the data in ENVI file format ready for immediate analysis in N-D VIS. 

Alternately, the consolidated script can generate all of the intermediate outputs, so that 

the analyst may still review the direct outputs of LASground, LASheight, LASclassify, 

and nearest neighbor. 

Finally, the analyst should setup various camouflaged targets in the scene of a 

future Optech Titan flight campaign. Ideally, military-grade camouflage should be used if 

available. The N-D VIS technique can then be applied to spectrally separate the 

camouflage from the true vegetation. This effort would have the potential to demonstrate 

the advantages of spectral-LiDAR classification over traditional geometric-based (purely 

spatial) classifiers in a military-relevant scenario. 



 129 

APPENDIX. FOUNDATIONAL DATA PROCESSING: NASA 
DATASET DERIVED GRAPHS, POINT CLOUDS, AND DIGITAL 

ELEVATION MODELS 

The purposes of this appendix are to outline preliminary work with laser point 

cloud modeling and processing software (Sections B and C) and to illustrate that multi-

wavelength LiDAR, whether for topographic or atmospheric purposes, provides more 

information than monochromatic LiDAR alone (Section A). This represents important 

groundwork for the spectral LiDAR classification techniques demonstrated in Chapters 

III–V. Quick Terrain Modeler (QTM) and Cloud Compare (CC) are utilized to develop 

conventional LiDAR datasets (in ASCII and LAS formats) from two archived NASA 

laser altimetry data records: the Mars Orbiter Laser Altimeter (MOLA) and the 

Clementine Lunar Probe. Additionally, atmospheric graphs are produced for a single 

mission day of the Phoenix Mars Lander’s meteorological LiDAR station. 

The MOLA and Clementine datasets are converted into spreadsheet format for 

preparatory work in Microsoft Excel, then imported into QTM and CC to create two-

dimensional (2D) and three-dimensional (3D) point clouds of Mars and the Moon. For 

the MOLA dataset, some additional orbital graphs are made in Excel. The exact 

processes are described thoroughly in Section B for MOLA and Section C for 

Clementine. Figure 93 is a general workflow diagram for both datasets. 

The Phoenix work in Section A does not follow Figure 93, as it is constructed 

using Excel alone. The Phoenix atmospheric graphs reveal how the combination of 532 

nm and 1064 nm laser information generates a greater amount of understanding about the 

composition of the Martian atmosphere. Although the bulk of this appendix involves 

single-, not multi-wavelength, LiDAR, it stands as a necessary learning experience and 

foundation for the main thesis effort.  
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Figure 93.  Workflow Diagram for NASA Laser Altimetry Datasets. 

 

A. PHOENIX MARS LANDER “PHX-M-MET-3-L-RDR-V1.0” 

The NASA higher-level Reduced Data Record (RDR) is selected over the raw 

dataset, the Experiment Data Record (EDR), to create graphs from Phoenix atmospheric 

LiDAR data. The RDR has a more intuitive data format than the EDR. For example, the 

RDR gives 532 nm and 1064 nm analog return signals in volts, whereas the EDR’s 

LiDAR return signals are in the form of digital numbers that would require a conversion 

to volts. This dataset is available via file transfer protocol (FTP) download from the 

Washington University (St. Louis, Missouri) Node of the NASA Planetary Data System 

(PDS), http://pds-geosciences.wustl.edu/default.htm. 

1. Martian Atmospheric Graphs for Sol 100 (05 Sep 2008) 

For this effort, a one day subset of Phoenix Lander data is selected to explain the 

concept that multi-wavelength LiDAR provides additional useful information, even for 

places without vegetation, buildings, or large lifeforms (i.e., Mars). The lander’s 

meteorological station collected the LiDAR data for Sol 100 over a period of 

approximately one hour, from 23:52 on 5 September 2008 to 00:52 on 6 September 2008. 
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The aforementioned are the local mean solar times at the lander’s location near the 

Martian north pole: 68.218º north latitude, 234.248º east longitude.  

The following graphs are Martian atmospheric profiles as a function of return 

signal voltage for two distinct moments in time: the first and last cycles of the Sol 100 

measurement period. For laser backscatter measurements below 10 km, Phoenix uses 

analog detection for both wavelengths: 532 nm and 1064 nm (Dickinson et al. 2008). 

Photon counting is employed for 532 nm backscatter detection from between 10 km and 

20 km; no method exists on Phoenix for 1064 nm backscatter detection from altitudes 

above 10 km (Dickinson et al. 2008). Here, only the analog signals for backscatter returns 

below 10 km are graphed. Figure 94 corresponds to the 1064 nm (infrared) return signal, 

and Figure 95 corresponds to the 532 nm (green) return signal.  

Figure 94.  Phoenix Mars Lander, Sol 100: 1064 nm LiDAR Backscatter vs. 
Altitude. Adapted from Dickinson et al. (2008). 
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In both figures, the y-axes display a logarithmic scale of the altitude above the 

Phoenix Lander, from 0 m to 10,000 m. The x-axes are ranges for average return signal 

voltage (due to backscatter from the atmosphere). LiDAR backscatter voltage is recorded 

in vertical bins of 20 m, so a data point exists for every 20 m of altitude. Due to the 

logarithmic scale of the y-axes, the data points above 1,000 m converge to resemble a 

solid line. 

Figure 95.  Phoenix Mars Lander, Sol 100: 532 nm LiDAR Backscatter vs. 
Altitude. Adapted from Dickinson et al. (2008). 

 

The depicted Sol 100 profiles suggest concentrations of atmospheric dust between 

the altitudes of 100 m and 800 m, with the overall volume of dust increasing from 23:52 

to 00:52. On this night, it seems that no Martian clouds exist above the dust layer, as 

indicated by the straight vertical lines from approximately 1 km to 10 km. This 

conclusion of an increase in atmospheric dust over the hour is further supported by the 

greater backscatter of the 532 nm signal at 00:52, as compared to the 1064 nm return 
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signal at the same time. The shorter wavelength makes the 532 nm photons more 

susceptible to backscattering from atmospheric dust particles. Here, multi-wavelength 

LiDAR offers us more information about the Martian atmosphere than monochromatic 

LiDAR alone. In “Clouds and Precipitation at the Phoenix Mars Lander Site,” Dickson et 

al. describe Sol 100 as “dust only: exhibiting a smooth profile of extinction coefficients” 

(Dickson et al. 2012, 1). 

B. MARS ORBITER LASER ALTIMETER “PRECISION EXPERIMENT 
DATA RECORD” 

The NASA Precision Experiment Data Records (PEDRs) are selected over the 

Aggregated Experiment Data Records (AEDR) to save time in the production of high 

quality 2D and 3D terrestrial LiDAR products of Mars. The PEDR dataset, officially 

identified as “MGS-M-MOLA-3-PEDR-L1A-V1.0,” is the result of precision orbital, 

geometric, and equipment calibration corrections applied by NASA to the raw AEDR 

files (Smith et al. 1999). Released in 1999, the dataset is available via FTP from the 

Washington University (St. Louis, Missouri) Geosciences Node of the NASA PDS, 

http://pds-geosciences.wustl.edu/default.htm. 

Initially, the 771 PEDR files are downloaded as compressed binary files (e.g., 

“ap01578l.b”). The number within each filename roughly corresponds to the beginning 

orbit of the file. Each PEDR binary file contains data for several MOLA orbits, 

approximately 500,000 to 750,000 laser shots per file. The NASA-programmed 

command-line script “PEDR2TAB” is used to extract the data as TAB files, viewable in 

Microsoft Excel. This program is courtesy of MOLA Team’s Gregory Neumann, and it 

includes a version for Windows, MAC OS, and Sun. The accompanying FORTRAN 

source code file “PEDR2TAB.PRM” contains several lines of data extraction options. A 

text editor places a “T” on each line desired for output to the TAB file. For this effort, 

PEDR2TAB.PRM line option “1” and “ground returns only” are selected to extract the 

following attributes for each laser point: IAU 2000 longitude (east positive), IAU 2000 

latitude (north positive), topography (planetary radius minus areoid), MOLA range, 

planetary radius, trigger channel, attitude flag, shot number, packet sequence number, and 

orbit number. Figure 96, shows a portion of an extracted PEDR file.  
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Figure 96.  Sample from Extracted MOLA PEDR File. 
Source: Smith et al. (1999). 

 

1. Processing of MOLA PEDR Files to Create Data Products 

To improve compatibility with Cloud Compare “3D point cloud and mesh 

processing software,” all of the 771 MOLA TAB files are opened individually in 

Microsoft Excel and converted into comma delimited text format (.csv). Additionally, the 

non-essential data columns are removed from each file (see Figure 96) in order to reduce 

the size of the final dataset.  

After initial processing, each .csv file contains four columns of data: longitude, 

latitude, planetary radius, and topography. Longitudes and latitudes are in IAU 2000 

format; planetary radii and topographies are in meters. Planetary radii represent the 

distances from the NASA-determined gravitational center of Mars to the location of the 

MOLA laser hit on the surface. The dataset documentation explains that NASA 

calculates planetary radii from an areoid of stable rotational and gravitational potential, 

based on the Goddard Mars Gravity Model: mgm 1025 (Smith et al., 1999 and 2003). 
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2. 2D Process and Results—IAU 2000 (Lat/Long) Coordinates 

a. MOLA Topography Graphs for Orbit # 20328 

First, two graphs are produced from the .csv file containing data for orbit number 

20,328. Figure 97 is a single-orbit representation of the Mars Global Surveyors’ ground 

track derived from actual MOLA ground returns. The x-axis is in IAU 2000 longitude (0–

360º East), and the y-axis is in IAU 2000 latitude (-90–90º North). The large gap at 

approximately 170º East most likely results from the decision to extract only valid ground 

returns via the aforementioned PEDR2TAB option: “1—Ground Returns Only.’ 

Additionally, the longitudes and the corresponding topography values are 

combined in Figure 98 to make an Apollo-style topography graph (See Figure 2) for 

Mars. Several prominent Martian landscape features are identified in red with the 

longitude and latitude coordinates in parenthesis. Again, the vertical line at 170º East 

corresponds to the gap in valid ground hits also seen in Figure 97. 

Figure 97.  Orbit Track Based on MOLA Ground Hits—Orbit 20,328. Adapted 
from Smith et al. (1999). 
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Figure 98.  MOLA Topography Above Mean Radius—Orbit 20,328. Adapted 
from Smith et al. (1999). 

 

b. 2D Maps and DEM 

All of the 771 .csv files are loaded in succession into Cloud Compare v2.6.0 using 

longitudes as the x-values, latitudes as the y-values, and topographies as the z-values. 

Next, the minimum and maximum z-values for the 771 Cloud Compare entities are 

inspected to remove values outside of valid Martian topographies: -9,200 m to 21,274 m. 

“Ap18004.csv” is discarded entirely, because it contains a large number of invalid 

topography values. A few additional .csv files contained one or two invalid topographies; 

we found and removed these errors quickly via basic Excel sort and filter functions. 

Seven hundred seventy files are then reloaded into Cloud Compare. These entities are 

now ready for merging. 

The Cloud Compare “Merge Multiple Clouds” function compiles the 770 separate 

point clouds into one entity of approximately 590 million points. We export this to ASCII 

immediately. The resulting combined point cloud, “MOLA 2D ASCII.txt,” occupies 29.7 

gigabytes of disk space. Figure 99 is a screenshot of the MOLA 2D point cloud opened in 

Quick Terrain Modeler v8.0.5.2 with elevations above areoid displayed in grayscale.  
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Figure 99.  Ungridded MOLA 2D Point Cloud (QTM)— 
Topography in Grayscale. 

 

A generic geodetic coordinate system is necessary in QTM to view the point 

cloud properly in the 3D viewer mode, because degrees of longitude and latitude are the 

x- and y-values, respectively. The default Cartesian coordinate system projects the map 

(Figure 99) properly in the 2D viewer mode, but not in the 3D mode. 

To produce the complete planetary DEM in Figure 100, the point cloud is 

converted to a QTT (Quick Terrain Modeler Gridded Surface) using the “Convert Model 

Type Function.” We accept the following default options: grid sampling at ~0.01, 

adaptive triangulation fill, and max z algorithm. Larger grid-sampling settings result in a 

gridded surface that distorts the planet’s natural features, and settings less than 0.01 result 

in program crashes due to the large data size of the point cloud. Based on the good result 

from the default options (Figure 100) and our disappointing tests with different grid 

sampling values, we decided not to experiment with altering the other parameters. 
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Figure 100.  MOLA Digital Elevation Model of Mars (QTM)— 
Topography in Color. 

 

Figures 99 and 100 maintain the IAU 2000 coordinate system and display it in a 

cylindrical projection. Zero degrees longitude corresponds to the left map edge, and 359 

degrees longitude corresponds to the right edge. NASA-produced DEMs, included in the 

Mission Experiment Gridded Data Records (MEGR), have resolutions of approximately 

128 pixels per degree of longitude at the equator and mid-latitudes and 512 pixels per 

degree at the poles—pixel size is approximately 0.463 km/pixel (Smith et al. 2003). The 

resolutions of the figures in this section exhibit negligible degradation from the NASA 

products, even with the one discarded file, “ap18004.csv.” The data loss is approximately 

700,000 of 590,000,000 points (0.0012%). 

The complete-planetary ASCII file loads slowly, and it is difficult to navigate and 

analyze on a computer with limited RAM (<12 gigabytes). Thirty two gigabytes or 

greater RAM should alleviate this problem. Quick Terrain Modeler’s “rectangular 

selection” tool allows one to select and export a subset of data points in laser file format 

(.las). This permits closer terrain analysis without lengthy screen refresh delays due to the 

large data file. The area selected for “MOLA Portion.las” includes prominent Martian 

terrain features in the western hemisphere, such as Olympus Mons, the other Tharsis 

volcanoes, and Valles Marineris. 
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Figure 101 is the un-gridded point cloud for the “MOLA Portion” subset. It shows 

the Mars Global Surveyor’s numerous orbital ground tracks across the landscape. Figure 

102 is the same scene in gridded format. Again, the default QTM “Convert Model Type” 

options are selected to generate the rasterized surface model. Remember, a geodetic 

coordinate system is required to properly view the point cloud in the 3D viewer mode of 

QTM with IAU 2000 coordinates as x- and y-values. QTM offers a coordinate conversion 

utility that is straightforward. 

Figure 101.  MOLA Subset Point Cloud (QTM)—Topography in Color. 
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Figure 102.  MOLA Subset DEM (QTM)—Topography in Color. 

 

3. 3D Conversion and Results—IAU 2000 to Cartesian Coordinates 

Unfortunately, no Cloud Compare or Quick Terrain Modeler functions exist that 

can directly convert the complete 2D point cloud (Figure 99) into a spherical 

representation of Mars. Nevertheless, it is possible to derive the 3D Cartesian coordinates 

for each laser point from the NASA-provided spherical coordinates: longitude, latitude, 

and planetary radius. Table 14 lists the parameters and formulas for the spherical-to-

Cartesian conversion, applied individually for each MOLA point in all 770 .csv files. 

MACRO functions in Excel are used to rapidly apply the three formulas to each line item 

(laser point), on average 500,000 to 750,000 lines per file. To verify that each file is 

processed correctly via the MACROs, no batch processing is implemented: all 770 files 

are opened, processed, inspected, and saved individually. 
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Table 14.   Generic Mathematical Formulas for Converting Each MOLA Point. 

Spherical Coordinates 

Polar Angle (θ)  = (90 degrees - IAU2000 Latitude) 

Azimuth Angle (φ)  = IAU2000 Longitude 

r (meters)  = Planetary Radius 

Derived Cartesians 

X (meters)  = cos(φ) x sin(θ) x r 

Y (meters)  = sin(φ) x sin(θ) x r 

Z (meters)  = cos(θ) x r 

 

Now, each MOLA .csv file contains seven columns: IAU 2000 longitude, IAU 

2000 latitude, planetary radius, Cartesian x, Cartesian y, Cartesian z, and topography. The 

770 files are imported into Cloud Compare using the Cartesian coordinates with 

topography as a scalar value. The separate point clouds are merged into one entity, and 

the result is saved as “MOLA 3D.csv” (36.2 gigabytes). 

For viewing the 3D point cloud in QTM, it is essential to import the topographies 

as the “alpha” values and to set the height scale to “color by alpha.” Also, the 3D point 

cloud must be viewed in a Cartesian coordinate system, unlike the 2D cloud that requires 

a geodetic system. Lastly, QTM gridding cannot successfully produce a 3D (spherical) 

raster of Mars—the attempt resulted in a complete failure which resembled an accordion 

ball. However, the spatial point density of the un-gridded cloud is sufficient to project the 

appearance of a complete surface, unless the viewer examines extremely close to the 

planet—where you will see ground tracks similar to Figure 101. 

Again, resolution is approximately 128 pixels/degree of longitude at the equator 

and 512 pixels/degree at the poles. When the display screen is zoomed in close to the 

planet’s surface, the satellite’s ground tracks (represented by crisscrossing lines of laser 

points) are significantly closer together at the poles than at the equator. Figures 103, 104, 

105, and 106 are select screenshots of the 3D MOLA point cloud in Cloud Compare and 
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Quick Terrain Modeler. The initials of the respective program are indicated in 

parentheses in the figure titles. Additionally, each image is color-scaled differently to best 

highlight the topographic features of the particular region in view. 

Figure 103.  MOLA 3D North Pole—Topography in Color (CC). 
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Figure 104.  MOLA 3D South Pole—Color (QTM). 

 

Figure 105.  MOLA 3D Eastern Hemisphere—Grayscale (QTM). 
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Figure 106.  MOLA 3D Western Hemisphere 
Topography in Grayscale (QTM). 

 

C. CLEMENTINE LUNAR PROBE “CLEM1-L-LIDAR-3-TOPO-V1.0” 

To produce a Clementine-data point cloud of the Moon, the “CLEM1-L-LIDAR-

3-TOPO-V1.0” dataset is downloaded via FTP from the PDS Geosciences Node, 

Washington University (St. Louis, Missouri). The dataset includes four TAB files plus 

the associated label files, each containing data for approximately 100 orbits: 

r009_099.tab, r100_199.tab, r200_299.tab, and r300_346.tab. These files are combined 

into one .csv file of over 100,000 laser data points. Next, each line item is compared to 

the lunar topography values contained in the higher-level data product “CLEM1-L-

LIDAR-5-TOPO-V1.0” and to the Clementine Topography Map of the Moon (Figure 6) 
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to determine erroneous laser measurements. The resulting lunar point cloud of valid 

topography values contains approximately 73,000 points. 

Figure 107 superimposes the Clementine-derived 2D point cloud, exported from 

Cloud Compare, onto a cylindrical lunar map with a resolution of 64 pixels/degree. The 

underlying lunar mosaic is one of the wide-angle-camera global morphological maps 

included in the “Lunar Reconnaissance Orbiter Camera Reduced Data Record,” courtesy 

of NASA/GSFC/Arizona State University. The image is centered at zero degrees north 

latitude and 180 degrees east longitude, corresponding to the farside of the Moon. 

Topography values are in meters above a lunar spheroid with an equatorial radius of 

1,738 km. 

Figure 107.  Clementine LiDAR Topographic Point Cloud. Adapted from 
Berwick et al. (2007) and Robinson (2010). 

 

Next, we convert the Clementine point cloud from IAU 2000 longitude/latitude 

coordinates to Cartesian coordinates, in accordance with Table 14, to produce a 3D lunar 

point cloud. Unfortunately, the point total of the Clementine data (~73,000 points) is far 

below that of the MOLA data (~590,000,000 points). Thus, the resulting Clementine 3D 

point cloud has insufficient point density to convey a complete spherical representation of 
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the lunar surface, unless the view screen is zoomed out substantially. Despite the poor 

resolution, the lower-quality 3D point clouds are shown in Figure 108.  

Figure 108.  Clementine LiDAR Point Cloud in 3D—Various Perspectives. 

 

From Figure 107 and the “farside (close-up view)” in Figure 108, we see that 

Clementine’s approximately 350 mapping orbits did not provide complete coverage of 

the Moon’s surface. Future work could apply this process to Lunar Reconnaissance 

Orbiter (LRO) data collected by its LiDAR, the Lunar Orbiter Laser Altimeter (LOLA). 

LOLA 2D and 3D point clouds can then be compared to those from Clementine. LOLA 

datasets are also available from the NASA Planetary Data System.  
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